Manganese catalyzed urea and polyurea synthesis using methanol as C1 source
-
* Corresponding author.
E-mail address: weipingliu@dhu.edu.cn (W. Liu).
1 These authors contributed equally to this work.
Citation:
Jiaxin Guo, Jun Tang, Hui Xi, Sheng-Yin Zhao, Weiping Liu. Manganese catalyzed urea and polyurea synthesis using methanol as C1 source[J]. Chinese Chemical Letters,
;2023, 34(4): 107731.
doi:
10.1016/j.cclet.2022.08.011
B. Kocyigit-Kaymakcioglu, A.O. Celen, N. Tabanca, et al., Molecules 18 (2013) 3562–3576.
doi: 10.3390/molecules18033562
C. Nitschke, G. Scherr, Ullmann's Encyclopedia of Industrial Chemistry, WileyVCH, Weinheim, 2010.
K. Matsuda, Med. Res. Rev. 14 (1994) 271–305.
doi: 10.1002/med.2610140302
D. Bankston, J. Dumas, R. Natero, et al., Org. Proc. Res. Dev. 6 (2002) 777–781.
doi: 10.1021/op020205n
G.A. Howarth, Surf. Coat. Int. Pt. B-Coat. Trans. 86 (2003) 111–118.
doi: 10.1007/BF02699621
F. Bigi, R. Maggi, G. Sartori, Green Chem. 2 (2000) 140–148.
doi: 10.1039/b002127j
H. Babad, A.G. Zeiler, Chem. Rev. 73 (1973) 75–91.
doi: 10.1021/cr60281a005
Y. Cao, J.G. Yang, Y. Deng, et al., Angew. Chem. Int. Ed. 59 (2020) 2080–2084.
doi: 10.1002/anie.201914089
E.S. Smirnova, J.M. Muñoz Molina, A. Johnson, et al., Angew. Chem. Int. Ed. 55 (2016) 7487–7491.
doi: 10.1002/anie.201603200
Z.H. Guan, H. Lei, M. Chen, et al., Adv. Synth. Catal. 354 (2012) 489–496.
doi: 10.1002/adsc.201100545
J.H. Park, J.C. Yoon, Y.K. Chung, Adv. Synth. Catal. 351 (2009) 1233–1237.
doi: 10.1002/adsc.200900106
K. Orito, M. Miyazawa, T. Nakamura, et al., J. Org. Chem. 71 (2006) 5951–5958.
doi: 10.1021/jo060612n
Y. Zhao, X. Guo, Z. Si, et al., J. Org. Chem. 85 (2020) 13347–13353.
doi: 10.1021/acs.joc.0c02032
S. Jiang, H.Y. Cheng, R.H. Shi, et al., ACS Appl. Mater. Interfaces 11 (2019) 47413–47421.
doi: 10.1021/acsami.9b17677
P. Wu, H. Cheng, R. Shi, et al., Adv. Synth. Catal. 361 (2019) 317–325.
doi: 10.1002/adsc.201801134
S. Jiang, R. Shi, H. Cheng, C. Zhang, F. Zhao, Green Energy Environ. 2 (2017) 370–376.
doi: 10.1016/j.gee.2017.05.001
P. Wang, Y. Fei, Y. Long, Y. Deng, J. CO2 Util. 28 (2018) 403–407.
doi: 10.1016/j.jcou.2018.10.020
M. Xu, A.R. Jupp, D.W. Stephan, Angew. Chem. Int. Ed. 56 (2017) 14277–14281.
doi: 10.1002/anie.201708921
M. Tamura, K. Ito, Y. Nakagawa, K. Tomishige, J. Catal. 343 (2016) 75–85.
doi: 10.1016/j.jcat.2015.11.015
B.G. Reed-Berendt, D.E. Latham, M.B. Dambatta, L.C. Morrill, ACS Cent. Sci. 7 (2021) 570–585.
doi: 10.1021/acscentsci.1c00125
D.A. Ekanayake, H. Guan, Top. Organomet. Chem. 68 (2021) 263–320.
L. Alig, M. Fritz, S. Schneider, Chem. Rev. 119 (2019) 2681–2751.
doi: 10.1021/acs.chemrev.8b00555
K. Junge, V. Papa, M. Beller, Chem. Eur. J. 25 (2019) 122–143.
doi: 10.1002/chem.201803016
A. Mukherjee, D. Milstein, ACS Catal. 8 (2018) 11435–11469.
doi: 10.1021/acscatal.8b02869
S. Chakraborty, P. Bhattacharya, H. Dai, H. Guan, Acc. Chem. Res. 48 (2015) 1995–2003.
doi: 10.1021/acs.accounts.5b00055
T. Zell, D. Milstein, Acc. Chem. Res. 48 (2015) 1979–1994.
doi: 10.1021/acs.accounts.5b00027
C. Gunanathan, D. Milstein, Chem. Rev. 114 (2014) 12024–12087.
doi: 10.1021/cr5002782
C. Gunanathan, D. Milstein, Science 341 (2013) 1229712–1229723.
doi: 10.1126/science.1229712
K. Natte, H. Neumann, M. Beller, R.V. Jagadeesh, Angew. Chem. Int. Ed. 56 (2017) 6384–6394.
doi: 10.1002/anie.201612520
S.H. Kim, S.H. Hong, Org. Lett. 18 (2016) 212–215.
doi: 10.1021/acs.orglett.5b03328
A. Kumar, D. Armstrong, G. Peters, M. Nagala, S. Shirran, Chem. Commun. 57 (2021) 6153–6156.
doi: 10.1039/D1CC01121A
E.M. Lane, N. Hazari, W.H. Bernskoetter, Chem. Sci. 9 (2018) 4003–4008.
doi: 10.1039/C8SC00775F
J. Wen, F. Wang, X. Zhang, Chem. Soc. Rev. 50 (2021) 3211–3237.
doi: 10.1039/D0CS00082E
W. Ai, R. Zhong, X. Liu, Q. Liu, Chem. Rev. 119 (2019) 2876–2953.
doi: 10.1021/acs.chemrev.8b00404
W. Liu, B. Sahoo, K. Junge, M. Beller, Acc. Chem. Res. 51 (2018) 1858–1869.
doi: 10.1021/acs.accounts.8b00262
F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 57 (2018) 46–60.
doi: 10.1002/anie.201709010
G.A. Filonenko, R. van Putten, E.J.M. Hensen, E.A. Pidko, Chem. Soc. Rev. 47 (2018) 1459–1483.
doi: 10.1039/C7CS00334J
J. Chen, J. Guo, Z. Lu, Chin. J. Chem. 36 (2018) 1075–1109.
doi: 10.1002/cjoc.201800314
X. Du, Z. Huang, ACS Catal. 7 (2017) 1227–1243.
doi: 10.1021/acscatal.6b02990
P. Chirik, R. Morris, Acc. Chem. Res. 48 (2015) 2495 -2495.
doi: 10.1021/acs.accounts.5b00385
R.M. Bullock, Science 342 (2013) 1054–1055.
doi: 10.1126/science.1247240
Z. Yan, P.L. Shao, Q. Qiang, et al., Chin. Chem. Lett. 33 (2022) 1207–1226.
doi: 10.1016/j.cclet.2021.08.112
D.S. Avila, R.L. Puntel, M. Aschner, Manganese in health and disease, in: A. Sigel, H. Sigel, K.O.R. Sigel (Eds.), Interrelations Between Essential Metal Ions and Human Diseases, Springer, Netherlands, Dordrecht, 2013, pp. 199–227.
S. Elangovan, C. Topf, S. Fischer, et al., J. Am. Chem. Soc. 138 (2016) 8809–8814.
doi: 10.1021/jacs.6b03709
S. Fu, Z. Shao, Y. Wang, Q. Liu, J. Am. Chem. Soc. 139 (2017) 11941–11948.
doi: 10.1021/jacs.7b05939
A. Kaithal, P. van Bonn, M. Hölscher, W. Leitner, Angew. Chem. Int. Ed. 59 (2020) 215–220.
doi: 10.1002/anie.201909035
P. Ryabchuk, K. Stier, K. Junge, M.P. Checinski, M. Beller, J. Am. Chem. Soc. 141 (2019) 16923–16929.
doi: 10.1021/jacs.9b08990
F. Kallmeier, T. Irrgang, T. Dietel, R. Kempe, Angew. Chem. Int. Ed. 55 (2016) 11806–11809.
doi: 10.1002/anie.201606218
M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc. 138 (2016) 15543–15546.
doi: 10.1021/jacs.6b10433
L. Zhang, Z. Wang, Z. Han, K. Ding, Angew. Chem. Int. Ed. 59 (2020) 15565–15569.
doi: 10.1002/anie.202006383
J. Sklyaruk, J.C. Borghs, O. El-Sepelgy, M. Rueping, Angew. Chem. Int. Ed. 58 (2019) 775–779.
doi: 10.1002/anie.201810885
A. Mukherjee, A. Nerush, G. Leitus, et al., J. Am. Chem. Soc. 138 (2016) 4298–4301.
doi: 10.1021/jacs.5b13519
C. Huang, J. Liu, H.H. Huang, X. Xu, Z. Ke, Chin. Chem. Lett. 33 (2022) 262–265.
doi: 10.1016/j.cclet.2021.06.046
A. Kaithal, M. Hölscher, W. Leitner, Angew. Chem. Int. Ed. 57 (2018) 13449–13453.
doi: 10.1002/anie.201808676
S. Kar, A. Goeppert, J. Kothandaraman, G.K.S. Prakash, ACS Catal. 7 (2017) 6347–6351.
doi: 10.1021/acscatal.7b02066
X. Liu, T. Werner, Adv. Synth. Catal. 363 (2021) 1096–1104.
doi: 10.1002/adsc.202001209
B.G. Reed-Berendt, L.C. Morrill, J. Org. Chem. 84 (2019) 3715–3724.
doi: 10.1021/acs.joc.9b00203
Z. Shao, Y. Li, C. Liu, et al., Nat. Commun. 11 (2020) 591–598.
doi: 10.1038/s41467-020-14380-3
L.U. Nordstrøm, H. Vogt, R. Madsen, J. Am. Chem. Soc. 130 (2008) 17672–17673.
doi: 10.1021/ja808129p
Y. Zhang, C. Chen, S.C. Ghosh, Y. Li, S.H. Hong, Organometallics 29 (2010) 1374–1378.
doi: 10.1021/om901020h
S. Kotachi, Y. Tsuji, T. Kondo, Y. Watanabe, ChemInform 21 (1990) 549–550.
doi: 10.1002/chin.199041152
G.S. Kumar, R.A. Kumar, P.S. Kumar, et al., Chem. Commun. 49 (2013) 6686–6688.
doi: 10.1039/c3cc42381f
S. Chakraborty, U. Gellrich, Y. Diskin-Posner, et al., Angew. Chem. Int. Ed. 56 (2017) 4229–4233.
doi: 10.1002/anie.201700681
G. Choi, S.H. Hong, ACS Sustain. Chem. Eng. 7 (2018) 716–723.
B. Kang, S.H. Hong, Adv. Synth. Catal. 357 (2015) 834–840.
doi: 10.1002/adsc.201400982
N. Ortega, C. Richter, F. Glorius, Org. Lett. 15 (2013) 1776–1779.
doi: 10.1021/ol400639m
E.M. Lane, K.B. Uttley, N. Hazari, W. Bernskoetter, Organometallics 36 (2017) 2020–2025.
doi: 10.1021/acs.organomet.7b00258
J. Bruffaerts, N. von Wolff, Y. Diskin-Posner, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 141 (2019) 16486–16493.
doi: 10.1021/jacs.9b08942
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Yunlong Sun , Wei Ding , Yanhao Wang , Zhening Zhang , Ruyun Wang , Yinghui Guo , Zhiyuan Gao , Haiyan Du , Dong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
Hang Wang , Qi Wang , Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Yueying Yang , Huiru Xie , Xinbo Yu , Yang Liu , Hui Wang , Hua Li , Lixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570
Jingping Hu , Jing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14–epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733
Zhiwei Chen , Heyun Sheng , Xue Li , Menghan Chen , Xin Li , Qiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937
Qi Li , Zi-Lu Wang , Yun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247