Mechanism of powdered activated carbon enhancing caproate production
-
* Corresponding authors.
E-mail addresses: wuqinglian1990@163.com (Q. Wu), guowanqian@126.com (W. Guo).
Citation:
Siying Xiang, Qinglian Wu, Weitong Ren, Wanqian Guo, Nanqi Ren. Mechanism of powdered activated carbon enhancing caproate production[J]. Chinese Chemical Letters,
;2023, 34(4): 107714.
doi:
10.1016/j.cclet.2022.07.057
Q. Wu, X. Bao, W. Guo, et al., Biotechnol. Adv. 37 (2019) 599–615.
doi: 10.1016/j.biotechadv.2019.03.003
K.J.J. Steinbusch, H.V.M. Hamelers, C.M. Plugge, et al., Energy Environ. Sci. 4 (2011) 216–224.
doi: 10.1039/C0EE00282H
S. Ge, J.G. Usack, C.M. Spirito, et al., Environ. Sci. Technol. 49 (2015) 8012–8021.
doi: 10.1021/acs.est.5b00238
J. Xu, J. Hao, J.J.L. Guzman, et al., Joule 3 (2019) 885–888.
doi: 10.1016/j.joule.2019.02.009
S.Y. Zhao, C.X. Chen, J. Ding, et al., Front. Environ. Sci. Eng. 16 (2021) 1–16.
Q. Wu, Y. Jiang, Y. Chen, et al., Bioresour. Technol. 340 (2021) 125633.
doi: 10.1016/j.biortech.2021.125633
S. Ramio-Pujol, R. Ganigue, L. Baneras, et al., Bioresour. Technol. 192 (2015) 296–303.
doi: 10.1016/j.biortech.2015.05.077
S. Gildemyn, B. Molitor, J.G. Usack, et al., Biotechnol. Biofuels 10 (2017) 1–15.
doi: 10.1186/s13068-016-0693-9
Q. Wu, X. Feng, Y. Chen, et al., J. Hazard. Mater. 402 (2020) 123471.
M.P. Bryant, E.A. Wolin, M.J. Wolin, et al., Arch. Mikrobiol. 59 (1967) 20–31.
doi: 10.1007/BF00406313
J.H. Thiele, M. Chartrain, J.G. Zeikus, Appl. Environ. Microbiol. 54 (1988) 10–19.
doi: 10.1128/aem.54.1.10-19.1988
Z.M. Summers, H.E. Fogarty, C. Leang, et al., Science 330 (2010) 1413–1415.
doi: 10.1126/science.1196526
G. Wang, Q. Li, X. Gao, et al., Bioresour. Technol. 250 (2018) 812–820.
doi: 10.1016/j.biortech.2017.12.004
M. Usman, S. Hao, H. Chen, et al., Environ. Int. 133 (2019) 105257.
doi: 10.1016/j.envint.2019.105257
Z. Jin, Z. Zhao, Y. Zhang, Sci. Total Environ. 677 (2019) 299–306.
doi: 10.1016/j.scitotenv.2019.04.372
R. Jia, D. Sun, Y. Dang, et al., Bioresour. Technol. 298 (2020) 122547.
doi: 10.1016/j.biortech.2019.122547
M. Roghair, T. Hoogstad, D. Strik, et al., Environ. Sci. Technol. 52 (2018) 1496–1505.
doi: 10.1021/acs.est.7b04904
C.A. Contreras-Dávila, N. Nadal Alemany, C. Garcia-Saravia Ortiz-de-Montellano, et al., ACS ES&T Eng. 2 (2022) 54–64.
Y. Liu, P. He, L. Shao, et al., Water Res. 119 (2017) 150–159.
doi: 10.1016/j.watres.2017.04.050
M.C.A.A. Van Eerten-Jansen, A. Ter Heijne, T.I.M. Grootscholten, et al., ACS Sustain. Chem. Eng. 1 (2013) 513–518.
doi: 10.1021/sc300168z
U. Frimmer, F. Widdel, Arch. Microbiol. 152 (1989) 479–483.
doi: 10.1007/BF00446933
S. Chen, A.E. Rotaru, P.M. Shrestha, et al., Sci. Rep. 4 (2014) 1–7.
J.H. Park, J.H. Park, H.J. Seong, et al., Bioresour. Technol. 259 (2018) 414–422.
doi: 10.1016/j.biortech.2018.03.050
Q. Yin, S. Yang, Z. Wang, et al., Chem. Eng. J. 333 (2018) 216–225.
doi: 10.1016/j.cej.2017.09.160
S. Li, Y. Cao, Z. Zhao, et al., ACS Sustain. Chem. Eng. 7 (2019) 9655–9662.
doi: 10.1021/acssuschemeng.9b01252
D.R. Lovley, Annu. Rev. Microbiol. 71 (2017) 643–664.
doi: 10.1146/annurev-micro-030117-020420
Y. Wang, W. Wei, S.L. Wu, et al., Environ. Sci. Technol. 54 (2020) 10904–10915.
doi: 10.1021/acs.est.0c03029
Y. Liu, P. He, W. Han, et al., Renew. Energy 161 (2020) 230–239.
doi: 10.1016/j.renene.2020.07.126
S. Ghysels, S. Buffel, K. Rabaey, et al., Bioresour. Technol. 319 (2021) 124236.
doi: 10.1016/j.biortech.2020.124236
H. Chen, S. Jin, Enzyme Microb. Technol. 39 (2006) 1430–1432.
doi: 10.1016/j.enzmictec.2006.03.027
D. Vasudevan, H. Richter, L.T. Angenent, Bioresour. Technol. 151 (2014) 378–382.
doi: 10.1016/j.biortech.2013.09.105
P.J. Weimer, D.M. Stevenson, Appl. Microbiol. Biotechnol. 94 (2012) 461–466.
doi: 10.1007/s00253-011-3751-z
B.S. Jeon, C. Moon, B.C. Kim, et al., Enzyme Microb. Technol. 53 (2013) 143–151.
doi: 10.1016/j.enzmictec.2013.02.008
B.S. Jeon, O. Choi, Y. Um, et al., Biotechnol. Biofuels 9 (2016) 129.
doi: 10.1186/s13068-016-0549-3
X. Zhu, Y. Zhou, Y. Wang, et al., Biotechnol. Biofuels 10 (2017) 102.
doi: 10.1186/s13068-017-0788-y
L.A. Kucek, M. Nguyen, L.T. Angenent, Water Res. 93 (2016) 163–171.
doi: 10.1016/j.watres.2016.02.018
Q. Wu, W. Guo, X. Bao, et al., Water Res. 145 (2018) 650–659.
doi: 10.1016/j.watres.2018.08.046
Y. She, J. Hong, Q. Zhang, et al., Bioresour. Technol. 302 (2020) 122869.
doi: 10.1016/j.biortech.2020.122869
L. Leng, M.K. Nobu, T. Narihiro, et al., Water Res. 148 (2019) 281–291.
doi: 10.1016/j.watres.2018.10.063
R. Zagrodnik, A. Duber, M. Lezyk, et al., Environ. Sci. Technol. 54 (2020) 5864–5873.
doi: 10.1021/acs.est.9b07651
X. Duan, Y. Chen, L. Feng, et al., Water Res. 196 (2021) 117004.
doi: 10.1016/j.watres.2021.117004
H. Seedorf, W.F. Fricke, B. Veith, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 2128–2133.
doi: 10.1073/pnas.0711093105
W. Han, P. He, L. Shao, et al., Appl. Environ. Microbiol. 84 (2018) e01614–e01618.
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Huijie An , Chen Yang , Zhihui Jiang , Junjie Yuan , Zhongming Qiu , Longhao Chen , Xin Chen , Mutu Huang , Linlang Huang , Hongju Lin , Biao Cheng , Hongjiang Liu , Zhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134
Tao Liu , Xuwei Han , Xueyi Sun , Weijie Zhang , Ke Gao , Runan Min , Yuting Tian , Caixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
Aolei Tan , Xiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
Guiyang Zheng , Xuelian Kang , Haoran Ye , Wei Fan , Christian Sonne , Su Shiung Lam , Rock Keey Liew , Changlei Xia , Yang Shi , Shengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Jiajing Wu , Ru-Ling Tang , Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Lilin Song , Mengru Sun , Yuqing Song , Feng Zhang , Bei Zhao , Hairong Zeng , Jinhui Shi , Huixin Liu , Shanshan Zhao , Tian Tian , Heng Yin , Guangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601
Xixian Sun , Shengke Li , Ruibing Wang , Leyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Ping Liu , Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465