Pillar[n]arenes-based materials for detection and separation of pesticides
-
* Corresponding author.
E-mail address: linqi2004@126.com(Q. Lin).
Citation:
Zhong-Di Tang, Xiao-Mei Sun, Ting-Ting Huang, Juan Liu, Bingbing Shi, Hong Yao, You-Ming Zhang, Tai-Bao Wei, Qi Lin. Pillar[n]arenes-based materials for detection and separation of pesticides[J]. Chinese Chemical Letters,
;2023, 34(4): 107698.
doi:
10.1016/j.cclet.2022.07.041
A. Donkor, P. Osei-Fosu, I. Asante, Environ. Sci. Pollut. Res. 23 (2016) 18966–18987.
doi: 10.1007/s11356-016-7317-6
M.C. Camara, E.V.R. Campos, R.A. Monteiro, J. Nanobiotechnol. 17 (2019) 1–19.
doi: 10.1186/s12951-018-0433-3
M. Lykogianni, E. Bempelou, F. Karamaouna, K.A. Aliferis, Sci. Total Environ. 795 (2021) 148625.
doi: 10.1016/j.scitotenv.2021.148625
G. Odukkathil, N. Vasudevan, Environ. Sci. Technol. 12 (2013) 421–444.
C.L. Bird, A.T. Kuhn, Electrochemistry of the viologens, Chem. Soc. Rev 10 (1981) 49–82.
doi: 10.1039/cs9811000049
C. Keawkumay, W. Rongchapo, J. Wittayakun, et al., Mater. Chem. Phys. 238 (2019) 121824–121832.
doi: 10.1016/j.matchemphys.2019.121824
W. Rongchapo, O. Sophiphun, K. Rintramee, S. Prayoonpokarach, J. Wittayakun, Water Sci. Technol. 68 (2013) 863–869.
doi: 10.2166/wst.2013.311
M.A. Aramendía, V. Borau, F.J. Urbano, et al., Food Chem. 97 (2006) 181–188.
doi: 10.1016/j.foodchem.2005.05.005
F.H. Huang, H.W. Gibson, W.S. Bryant, D.S. Nagvekar, F.R. Fronczek, J. Am. Chem. Soc. 125 (2003) 9367–9371.
doi: 10.1021/ja034968h
Q.S. Zong, C.F. Chen, Org. Lett. 8 (2006) 211–214.
doi: 10.1021/ol052325w
K. Wang, D.S. Guo, Y. Liu, et al., J. Med. Chem. 52 (2009) 6402–6412.
doi: 10.1021/jm900811z
M. Zhang, B. Zheng, F.H. Huang, Chem. Commun. 47 (2011) 10103–10105.
doi: 10.1039/c1cc13834k
I.M. Meftaul, K. Venkateswarlu, R. Dharmarajan, P. Annamalai, M. Megharaj, Sci. Total Environ. 771 (2020) 134612.
Y. Luo, W. Zhang, X. Xiao, et al., Chin. Chem. Lett. 32 (2021) 367–370.
doi: 10.1016/j.cclet.2020.02.023
C.L. Tao, B. Chen, B.Z. Tang, et al., Chem. Commun. 53 (2017) 9975–9978.
doi: 10.1039/C7CC05031C
N.S. Sulaiman, K. Rovina, V.M. Joseph, J. Consum. Prot. Food Saf. 14 (2019) 209–221.
doi: 10.1007/s00003-019-01242-4
H. Dai, Z.Y. Deng, Y.B. Zeng, et al., J. Hazard. Mater. 398 (2020) 122845.
B.X. Wang, H.J. Wang, R. Yuan, et al., Chem. Commun. 52 (2016) 5049–5052.
doi: 10.1039/C5CC10491B
W. Li, Z.M. Zhang, J. Chen, et al., J. Hazard. Mater. 384 (2020) 121241.
doi: 10.1016/j.jhazmat.2019.121241
H. Zhang, Y.W. Yang, F. Liang, Chin. Chem. Lett. 33 (2022) 1537–1540.
doi: 10.1016/j.cclet.2021.09.002
X. Zhang, J.X. Zhang, R.B. Wang, J. Agric. Food Chem. 67 (2019) 7783–7792.
doi: 10.1021/acs.jafc.9b00764
E. Mallat, C. Barzen, R. Abuknesha, G. Gauglitz, D. Barceló, Anal. Chim. 427 (2001) 165–171.
doi: 10.1016/S0003-2670(00)01016-3
J. Chen, X.W. Min, Q.H. Chen, et al., Anal. Chim. Acta 879 (2015) 41–47.
doi: 10.1016/j.aca.2015.03.058
N.C. Posecion, E.M. Ostrea, D.M. Bielawski, J. Chromatogr. B 862 (2008) 93–99.
doi: 10.1016/j.jchromb.2007.11.002
Y.G. Zou, Y.Y. Shi, L.L. Wang, et al., J. Chromatogr. B 879 (2011) 1809–1812.
doi: 10.1016/j.jchromb.2011.05.004
L. Zhang, X.A. Liu, K.D. Gillis, T.E. Glass, Angew. Chem. Int. Ed. 58 (2019) 7611–7614.
doi: 10.1002/anie.201810919
H. Yao, Q. Zhou, Q. Lin, et al., Chin. Chem. Lett. 31 (2020) 1231–1234.
doi: 10.1016/j.cclet.2019.09.046
M. Schäferling, Angew. Chem. Int. Ed. 51 (2012) 3532–3554.
doi: 10.1002/anie.201105459
Y.X. Liu, L. Lonappanb, S.K. Brarb, S.M. Yang, Sci. Total Environ. 35 (2012) 64–74.
M.K. Arfanis, P. Adamou, P. Falaras, et al., Chem. Eng. J. 310 (2017) 525– 536.
doi: 10.1016/j.cej.2016.06.098
J.S. Liu, C.J. Feng, S.M. Wang, Spe. Purif. Technol. 288 (2022) 120644.
doi: 10.1016/j.seppur.2022.120644
R. Bhardwaj Chansi, K. Hadwani, T. Basu, Nanosci. Sustain. Agric. (2019) 75–99.
W.T. Xu, X. Xiao, J.X. Liu, et al., J. Agric. Food Chem. 69 (2021) 584–591.
doi: 10.1021/acs.jafc.0c05577
J.W. Li, Y.L. Wang, X.J. Li, S. Yan, S.Y. Pan, Food Chem. 192 (2016) 260–267.
doi: 10.1016/j.foodchem.2015.07.018
A. Alsbaiee, D.E. Helbling, W.R. Dichtel, et al., Nature 529 (2016) 190–194.
doi: 10.1038/nature16185
Y.Y. Chen, T.B. Wei, Q. Lin, et al., Chem. Commun. 57 (2021) 284–301.
doi: 10.1039/D0CC05776B
S.Y. Liu, T.S. Yan, Q.X. Wu, Z. Xu, J. Han, Chin. Chem. Lett. 33 (2022) 239–242.
doi: 10.1016/j.cclet.2021.07.023
J.F. Chen, Q. Lin, Y.M. Zhang, T.B. Wei, H. Yao, Chem. Commun. 53 (2017) 13296–13311.
doi: 10.1039/C7CC08365C
Y.M. Cai, L.H. Yuan, W. Feng, et al., J. Hazard. Mater. 405 (2021) 124214.
doi: 10.1016/j.jhazmat.2020.124214
K.Y. Wang, X.Y. Hu, L.Y. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 9205–9214.
doi: 10.1002/anie.202010150
T. Ogoshi, T.A. Yoshiaki, N. Yamagishi, Chem. Rev. 116 (2016) 7937–8002.
doi: 10.1021/acs.chemrev.5b00765
K.Y. Wang, L.Y. Wang, X.Y. Hu, et al., Chin. Chem. Lett. 33 (2022) 89–96.
doi: 10.1016/j.cclet.2021.06.026
W. Shao, X. Liu, L.Y. Wang, et al., Chem. Commun. 54 (2018) 9462–9465.
doi: 10.1039/C8CC05180A
M. Xue, Y. Yang, X.D. Chi, Z.B. Zhang, F.H. Huang, Acc. Chem. Res. 45 (2012) 1294–1308.
doi: 10.1021/ar2003418
Y.Y. Fang, W. Feng, L.H. Yuan, et al., RSC Adv. 3 (2013) 12376–12383.
doi: 10.1039/c3ra41251b
T. Adiri, D. Marcianoz, Y. Cohen, Chem. Commun. 49 (2013) 7082–7084.
doi: 10.1039/c3cc43253j
H.C. Zhang, N.L. Strutt, J.F. Stoddart, et al., Chem. Commun. 47 (2011) 11420–11422.
doi: 10.1039/c1cc14934b
C. Li, L. Zhao, X. Jia, et al., Chem. Commun. 46 (2010) 9016–9018.
doi: 10.1039/c0cc03575k
Y. Ma, W. Chen, F.H. Huang, et al., Chem. Commun. 47 (2011) 12340–12342.
doi: 10.1039/c1cc15660h
M. Tang, Q. Bian, Y. Liu, et al., RSC Adv. 10 (2020) 35136–35140.
doi: 10.1039/D0RA06657E
L.Q. Shangguan, B.B. Shi, F.H. Huang, et al., Tetrahedron Lett. 60 (2019) 150949.
doi: 10.1016/j.tetlet.2019.150949
Y.M. Yang, Q. Zhao, W. Feng, F.Y. Li, Chem. Rev. 113 (2013) 192–270.
doi: 10.1021/cr2004103
T. Ogoshi, Y. Nakamoto T. Yamagishi, Chem. Rev. 116 (2016) 7937–8002.
doi: 10.1021/acs.chemrev.5b00765
N.L. Strutt, H.C. Zhang, S.T. Schneebeli, J.F. Stoddart, Acc. Chem. Res. 47 (2014) 2631–2642.
doi: 10.1021/ar500177d
X.Y. Lou, Y.W. Yang, Adv. Mater. 32 (2020) 2003263.
doi: 10.1002/adma.202003263
Z.H. Zhang, Y.M. Zhang, T.B. Wei, et al., Chin. Chem. Lett. 34 (2023) 107085.
doi: 10.1016/j.cclet.2021.12.077
C.G. Hou, L.J. Liu, X.J. Lao, et al., Chin. Chem. Lett. 32 (2020) 214–217.
C.J. Li, Q.Q. Xu, J. Li, F.N. Yao, X.S. Jia, Org. Biomol. Chem. 8 (2010) 1568–1576.
doi: 10.1039/b920146g
F.H. Huang, K.A. Switek, H.W. Gibson, Chem. Commun. (2005) 3655–3657.
H.W. Gibson, H. Wang, C. Slebodnick, Org. Chem. 72 (2007) 3381–3393.
doi: 10.1021/jo070030l
H. Zhang, B. Zhou, H. Li, D.H. Qu, H.J. Tian, Org. Chem. 78 (2013) 2091–2098.
doi: 10.1021/jo302107a
X.D. Chi, M. Xue, Y. Yao, F.H. Huang, Org. Lett. 15 (2013) 4722–4725.
doi: 10.1021/ol402048n
R. Wang, Y. Sun, H.B. Li, et al., Angew. Chem. 129 (2017) 5378–5382.
doi: 10.1002/ange.201702175
Q.Q. Song, H.B. Li, G.F. Yang, et al., Chem. Commun. 56 (2020) 7593–7596.
doi: 10.1039/D0CC02187C
P. Wang, Y. Yao, M. Xue, Chem. Commun. 50 (2014) 5064–5067.
doi: 10.1039/C4CC01403K
Y.J. Ma, F.H. Huang, J.L. Hou, et al., Org. Lett. 14 (2012) 1532–1535.
doi: 10.1021/ol300263z
G.C. Yu, X.Y. Zhou, F.H. Huang, et al., J. Am. Chem. Soc. 134 (2012) 19489–19497.
doi: 10.1021/ja3099905
W.B. Hu, C.D. Xie, K. Wen, et al., J. Org. Chem. 80 (2015) 7994–8000.
doi: 10.1021/acs.joc.5b01038
Y.F. Zhang, H. Yao, Q. Lin, et al., Sens. Actuator. B: Chem. 327 (2021) 128885.
doi: 10.1016/j.snb.2020.128885
M. Brigante, P.C. Schulz, J. Colloid Interface Sci. 363 (2011) 355–361.
doi: 10.1016/j.jcis.2011.07.061
C. Huang, W.C. Hung, K.Y.A. Lin, et al., Polym. Degrad. Stab. 161 (2019) 206–212.
doi: 10.1016/j.polymdegradstab.2019.01.023
S.T. Hsu, T.C. Pan, Bioresour. Technol. 98 (2007) 3617–3621.
doi: 10.1016/j.biortech.2006.11.060
Z.H. Wang, H. Yao, Q. Lin, et al., Mater. Sci. Eng. C 118 (2021) 11358–11364.
S. Lan, S.J. Zhan, J.M. Ding, J.Q. Ma, D. Ma, J. Mater. Chem. A 5 (2017) 2514–2518.
doi: 10.1039/C6TA09266G
X.C. Qian, X.J. Zhou, L. Yang, et al., Microchemical J. 150 (2019) 104203.
doi: 10.1016/j.microc.2019.104203
X.P. Tan, Y.W. Chen, Q. Gou, et al., Talanta 195 (2019) 472–479.
doi: 10.1016/j.talanta.2018.11.099
X.W. Mao, T. Liu, H.B. Li, et al., Chem. Commun. 52 (2016) 4385–4388.
doi: 10.1039/C6CC00949B
T. Zhou, N. Song, H. Yu, Y.W. Yang, Langmuir 31 (2015) 1454–1461.
doi: 10.1021/la5050199
J. Zhang, R.A. Lucas, H.B. Li, et al., Anal. Chem. 93 (2021) 5430–5436.
doi: 10.1021/acs.analchem.0c05033
X.P. Tan, T. Huang, G.F. Zhao, et al., ACS Sustain. Chem. Eng. 7 (2019) 20051–20059.
doi: 10.1021/acssuschemeng.9b05804
G. Yu, M. Xue, F.H. Huang, et al., J. Am. Chem. Soc. 134 (2012) 13248–13251.
doi: 10.1021/ja306399f
H. Tong, Y.N. Hong, B.Z. Tang, et al., Chem. Commun. 35 (2006) 3705–3707.
P. Wang, X.Z. Yan, F.H. Huang, Chem. Commun. 50 (2014) 5017–5019.
doi: 10.1039/c4cc01560f
Y.H. Guo, F. Gao, K. Wen, et al., ACS Appl. Mater. Interfaces 13 (2021) 16507–16515.
doi: 10.1021/acsami.1c02583
S.N. Talapaneni, D. Kim, A. Coskun, et al., Chem. Mater. 28 (2016) 4460–4466.
doi: 10.1021/acs.chemmater.6b01667
W. Cui, H. Tang, D. Cao, et al., Macromol. Rapid Commun. 38 (2017) 1700161.
doi: 10.1002/marc.201700161
X. Li, Z. Li, Y.W. Yang, Adv. Mater. 30 (2018) 1800177.
doi: 10.1002/adma.201800177
Z. Wang, H. Yang, K. Wen, et al., ACS Appl. Polym. Mater. 2 (2020) 5566–5573.
doi: 10.1021/acsapm.0c00896
B.B. Shi, H.X. Guan, F.H. Huang, et al., J. Mater. Chem. A 5 (2017) 24217–24222.
doi: 10.1039/C7TA08894A
H.Q. Ju, F.B. Zhu, H. Xing, Z.L. Wu, F.H. Huang, Macromol. Rapid Commun. 38 (2017) 1700232.
doi: 10.1002/marc.201700232
K.S. Novoselov, A.K. Geim, A.A. Firsov, et al., Nature 438 (2005) 197.
doi: 10.1038/nature04233
Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438 (2005) 201–204.
doi: 10.1038/nature04235
C.S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev. 111 (2011) 7981–8006.
doi: 10.1021/cr2002646
L. Hromadkova, Z. Bilkova, M. Slovakova, et al., Analyst 143 (2018) 466–474.
doi: 10.1039/C7AN01508A
Z. Liu, J.T. Robinson, X.M. Sun, H. Dai, J. Am. Chem. Soc. 130 (2008) 10876–10877.
doi: 10.1021/ja803688x
X.M. Sun, Z. Lu, H.J. Dai, et al., Nano Res. 1 (2008) 203–212.
doi: 10.1007/s12274-008-8021-8
G.C. Yu, Q.Z. Zhou, F.H. Huang, et al., Chem. Commun. 48 (2012) 2958–2960.
doi: 10.1039/c2cc00125j
H. Li, F. Qu, Mater. Chem. 17 (2007) 3536–3544.
doi: 10.1039/b705743a
G.S. Such, A.P.R. Johnston, F. Caruso, Chem. Soc. Rev. 40 (2011) 19–29.
doi: 10.1039/C0CS00001A
J.B. Schlenoff, Langmuir 25 (2009) 14007–14010.
doi: 10.1021/la901950c
X. Zhang, H. Chen, H.Y. Zhang, Chem. Commun. 14 (2007) 1395–1405.
Y. Li, X. Wang, J.Q. Sun, Chem. Soc. Rev. 41 (2012) 5998–6009.
doi: 10.1039/c2cs35107b
B. Yuan, J.F. Xu, X. Zhang, et al., ACS Appl. Mater. Interfaces 8 (2016) 3679–3685.
doi: 10.1021/acsami.5b08854
G.G. Qing, X. Wang, L. Jiang, H. Fuchs, T. Sun, Soft Matter 5 (2009) 2759–2765.
doi: 10.1039/b900504h
G.G. Qing, T. Sun, Angew. Chem. Int. Ed. 53 (2014) 930–932.
doi: 10.1002/anie.201306660
N.M. Feng, H.Y. Zhao, J.Y. Zhan, D.M. Tian, H.B. Li, Org. Lett. 14 (2012) 1958–1961.
doi: 10.1021/ol203226q
L. Luo, L. Jiang, H.B. Li, et al., Angew. Chem. Int. Ed. 55 (2016) 12713–12716.
doi: 10.1002/anie.201603906
T.L. Xu, W. Gao, L.P. Xu, X.J. Zhang, S.T. Wang, Adv. Mater. 29 (2017) 1603250.
doi: 10.1002/adma.201603250
I. Ortiz-Rivera, T.M. Courtney, A. Sen, Adv. Funct. Mater. 26 (2016) 2135–2142.
doi: 10.1002/adfm.201504619
D. Patra, S. Sengupta, A. Sen, et al., Nanoscale 5 (2013) 1273–1283.
doi: 10.1039/C2NR32600K
R. Varshney, M. Alam, C. Agashe, R. Joseph, D. Patra, Chem. Commun. 56 (2020) 9284–9287.
doi: 10.1039/D0CC04282J
I. Vlassiouk, T.R. Kozel, Z.S. Siwy, J. Am. Chem. Soc. 131 (2009) 8211–8220.
doi: 10.1021/ja901120f
Z. Long, S.S. Zhan, F. Xia, et al., Anal. Chem. 90 (2018) 577–588.
doi: 10.1021/acs.analchem.7b04737
X.P. Zhao, S.S. Wang, M.R. Younis, X.H. Xia, C. Wang, Anal. Chem. 90 (2018) 896–902.
doi: 10.1021/acs.analchem.7b03818
H.B. Aiyappa, J. Thote, D.B. Shinde, R. Banerjee, S. Kurungot, Chem. Mater. 28 (2016) 4375–4379.
doi: 10.1021/acs.chemmater.6b01370
S.Y. Ding, J. Gao, W. Wang, et al., J. Am. Chem. Soc. 133 (2011) 19816–19822.
doi: 10.1021/ja206846p
B.J. Yao, F. Li, Y.B. Dong, et al., ACS Appl. Mater. Interfaces 10 (2018) 20448–20457.
doi: 10.1021/acsami.8b04022
C. Wang, Z. Wang, X. Zhang, Acc. Chem. Res. 45 (2012) 608–618.
doi: 10.1021/ar200226d
Y. Sun, W.X. Fu, C.Y. Chen, J. Wang, Y. Yao, Chem. Commun. 53 (2017) 3725–3728.
doi: 10.1039/C7CC00291B
T. Ogoshi, M. Hashizume, T. Yamagishi, Y. Nakamoto, Chem. Commun. 46 (2010) 3708–3710.
doi: 10.1039/c0cc00348d
Xueru Zhao , Aopu Wang , Shimin Wang , Zhijie Song , Li Ma , Li Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205
Yarui Li , Huangjie Lu , Yingzhe Du , Jie Qiu , Peng Lin , Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562
Jingyu Chen , Sha Wu , Yuhao Wang , Jiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Yao-Yu Ma , Wen-Juan Shi , Gang-Ding Wang , Xin Liu , Lei Hou , Yao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729
Xinqiong Li , Guocheng Rao , Xi Peng , Chan Yang , Yanjing Zhang , Yan Tian , Xianghui Fu , Jia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Shuaige Bai , Shuai Huang , Ting Luo , Bin Feng , Yanpeng Fang , Feiyi Chu , Jie Dong , Wenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054
Anjing Liao , Wei Sun , Yaming Liu , Han Yan , Zhi Xia , Jian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
Jun Xiong , Ke-Ke Chen , Neng-Bin Xie , Wei Chen , Wen-Xuan Shao , Tong-Tong Ji , Si-Yu Yu , Yu-Qi Feng , Bi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021