Advances in application of sensors for determination of phthalate esters
-
* Corresponding authors.
E-mail addresses: csfutanyimin@126.com (Y. Tan), hndengyan@126.com (Y. Deng).
Citation:
Chuanxiang Zhang, Jie Zhou, Tingting Ma, Wenfei Guo, Dan Wei, Yimin Tan, Yan Deng. Advances in application of sensors for determination of phthalate esters[J]. Chinese Chemical Letters,
;2023, 34(4): 107670.
doi:
10.1016/j.cclet.2022.07.013
Y.M. Lee, J.E. Lee, W. Choe, et al., Environ. Int. 126 (2019) 635–643.
doi: 10.1016/j.envint.2019.02.059
J.L. Yang, Y.X. Li, Y. Wang, et al., TrAC-Trend. Anal. Chem. 72 (2015) 10–26.
doi: 10.1016/j.trac.2015.03.018
R.Y. Sun, H.S. Zhuang, Food Anal. Methods 8 (2015) 1990–1999.
doi: 10.1007/s12161-014-0085-3
M. Negev, T. Berman, S. Reicher, et al., Chemosphere 192 (2018) 217–224.
doi: 10.1016/j.chemosphere.2017.10.132
E. Fasano, F. Bono-Blay, T. Cirillo, et al., Food Control 27 (2012) 132–138.
doi: 10.1016/j.foodcont.2012.03.005
M. Jeddi, N. Rastkari, R. Ahmadkhaniha, M. Yunesian, Food Res. Int. 69 (2015) 256–265.
doi: 10.1016/j.foodres.2014.11.057
C.Y. Chen, A.V. Ghule, W.Y. Chen, et al., Appl. Surf. Sci. 231-232 (2004) 447–451.
doi: 10.1016/j.apsusc.2004.03.168
D. Gao, Z. Li, H. Wang, H. Liang, Sci. Total Environ. 645 (2018) 1400–1409.
doi: 10.1016/j.scitotenv.2018.07.093
X. Zheng, B.T. Zhang, Y. Teng, Sci. Total Environ. 476-477 (2014) 107–113.
doi: 10.1016/j.scitotenv.2013.12.111
K.K. Selvaraj, G. Sundaramoorthy, P.K. Ravichandran, et al., Environ. Geochem. Health 37 (2015) 83–96.
doi: 10.1007/s10653-014-9632-5
S. Orecchio, R. Indelicato, S. Barreca, J. Toxicol. Env. Heal. A 78 (2015) 1008–1018.
doi: 10.1080/15287394.2015.1021433
I. Ustun, S. Sungur, R. Okur, et al., Food Anal. Methods 8 (2014) 222–228.
V. Lo Turco, G. Di Bella, A.G. Potortì, et al., Eur. Food Res. Technol. 240 (2014) 451–458.
T. Li, P.H. Yin, L. Zhao, et al., Water Sci. Technol. 71 (2015) 183–190.
doi: 10.2166/wst.2014.485
S. Sampath, K.K. Selvaraj, G. Shanmugam, et al., Environ. Pollut. 221 (2017) 407–417.
doi: 10.1016/j.envpol.2016.12.003
M. Shi, Y.Y. Sun, Z.H. Wang, et al., Environ. Pollut. 250 (2019) 1–7.
doi: 10.1016/j.envpol.2019.03.064
N. Alkan, A. Alkan, J. Castro-Jimenez, et al., Sci. Total Environ. 760 (2021) 143412.
doi: 10.1016/j.scitotenv.2020.143412
L.L. Zhang, J.L. Liu, H.Y. Liu, et al., Ecotoxicology 24 (2015) 967–984.
doi: 10.1007/s10646-015-1446-4
T.C. Li, Y.C. Fan, D.S. Cun, et al., Front. Environ. Sci. Eng. 14 (2020) 139–149.
R.L. Li, J.B. Liang, Z.B. Gong, et al., Sci. Total Environ. 580 (2017) 388–397.
doi: 10.1016/j.scitotenv.2016.11.190
Y. Ait Bamai, C. Miyashita, A. Araki, et al., Sci. Total Environ. 618 (2018) 1408–1415.
doi: 10.1016/j.scitotenv.2017.09.270
G. Zaki, T. Shoeib, Sci. Total Environ. 618 (2018) 142–150.
doi: 10.1016/j.scitotenv.2017.10.337
Q. Yang, Z.D. Wen X.L. Huang, et al., J. Great. Lakes Res. 47 (2021) 437–446.
doi: 10.1016/j.jglr.2021.01.001
A. Paluselli, V. Fauvelle, N. Schmidt, et al., Sci. Total Environ. 621 (2018) 578–587.
doi: 10.1016/j.scitotenv.2017.11.306
W. Zhang, X. Li, C. Guo, J. Xu, Environ. Sci. Pollut. Res. 28 (2021) 25207–25217.
doi: 10.1007/s11356-021-12421-y
Y. Xu, Z.G. Song, X.P. Chang, et al., Ecotoxicol. Environ. Saf. 208 (2021) 111624.
doi: 10.1016/j.ecoenv.2020.111624
Z.P. Cheng, Y. Wang, B.T. Qiao, et al., Sci. Total Environ. 768 (2021) 144945.
doi: 10.1016/j.scitotenv.2021.144945
X.Y. Gao, J. Li, X.N. Wang, et al., Ecotoxicol. Environ. Saf. 171 (2019) 564–570.
doi: 10.1016/j.ecoenv.2019.01.001
M.M. Abdel daiem, J. Rivera-Utrilla, R. Ocampo-Perez, et al., J. Environ. Manage. 109 (2012) 164–178.
doi: 10.1016/j.jenvman.2012.05.014
X.T. Liu, C.F. Peng, Y.M. Shi, et al., Environ. Sci. Technol. 53 (2019) 1675–11683.
D. Kim, J.H. Kim, S.C. Seo, Sustainability 12 (2020) 6166.
doi: 10.3390/su12156166
L.Y. Wang, Y.Y. Gu, Z.M. Zhang, et al., Sci. Total Environ. 770 (2021) 144705.
doi: 10.1016/j.scitotenv.2020.144705
Q.Y. Zou, S.L. Hong, H.Y. Kang, et al., Sci. Rep. 10 (2020) 14625.
doi: 10.1038/s41598-020-71517-6
M. Minatoya, A. Araki, C. Miyashita, et al., Sci. Total Environ. 579 (2017) 606–611.
doi: 10.1016/j.scitotenv.2016.11.051
H. Q. Anh, H.M. N. Nguyen, T.Q. Do, et al., Sci. Total Environ. 760 (2021) 143380.
doi: 10.1016/j.scitotenv.2020.143380
A.K. Wesselink, V. Fruh, R. Hauser, et al., J. Expo. Sci. Env. Epidl. 31 (2021) 461–475.
doi: 10.1038/s41370-020-00270-9
S.S. Yalcin, I. Erdal, S. Cetinkaya, B. Oguz, Int. J. Environ. Health Res. 31 (2021) 1–14.
doi: 10.1080/09603123.2019.1625032
D. Salazar-Beltrán, L. Hinojosa-Reyes, E. Ruiz-Ruiz, et al., Food Anal. Methods 11 (2017) 48–61.
H.J. Heo, M.J. Choi, J.K. Park, et al., Water 12 (2019) 122.
doi: 10.3390/w12010122
X. Li, W.P. Zhang, J.P. Lv, et al., Environ. Sci. Eur. 33 (2021) 19.
doi: 10.1186/s12302-021-00457-3
B. Prasad, Environ. Sci. : Proc. Imp. 23 (2021) 389–399.
X.G. Zhao, H.Y. Jin, D.H. Li, et al., Mar. Pollut. Bull. 160 (2020) 111667.
doi: 10.1016/j.marpolbul.2020.111667
D.C. Wu, X.L. Chen, F. Liu, et al., Microchem. J. 159 (2020) 105563.
doi: 10.1016/j.microc.2020.105563
H. Chen, W. Mao, Y.Q. Shen, et al., Environ. Sci. Pollut. Res. 26 (2019) 24609–24619.
doi: 10.1007/s11356-019-05259-y
S. Singh, S.S. Li, Int. J. Mol. Sci. 13 (2012) 10143–10153.
doi: 10.3390/ijms130810143
Q.Y. Shi, J.C. Tang, L. Wang, et al., Ecotoxicol. Environ. Saf. 213 (2021) 112041.
doi: 10.1016/j.ecoenv.2021.112041
J. Chi, H.T. Zhang, D.X. Zhao, Mar. Pollut. Bull. 162 (2021) 111881.
doi: 10.1016/j.marpolbul.2020.111881
A. Ranjbar Jafarabadi, M. Dashtbozorg, E. Raudonyte-Svirbutaviciene, et al., Sci. Total Environ. 775 (2021) 145822.
doi: 10.1016/j.scitotenv.2021.145822
G. Bolat, Y.T. Yaman, S. Abaci, Sens. Actuators B: Chem. 299 (2019) 127000.
doi: 10.1016/j.snb.2019.127000
A. Estevez-Danta, R. Rodil, B. Perez-Castano, et al., Talanta 224 (2021) 121912.
doi: 10.1016/j.talanta.2020.121912
N. Yue, C. Deng, C.M. Li, et al., J. Agr. Food Chem. 68 (2020) 6910–6918.
doi: 10.1021/acs.jafc.9b07643
Y. Kudo, K. Obayashi, H. Yanagisawa, et al., J. Chromatogra. A 1602 (2019) 441–449.
doi: 10.1016/j.chroma.2019.06.014
S. Keresztes, E. Tatar, Z. Czegeny, et al., Sci. Total Environ. 458-460 (2013) 451–458.
doi: 10.1016/j.scitotenv.2013.04.056
O.H. Fred-Ahmadu, O.O. Ayejuyo, N.U. Benson, Data Brief 31 (2020) 105755.
doi: 10.1016/j.dib.2020.105755
R.Y. Sun, H.S. Zhuang, Anal. Biochem. 480 (2015) 49–57.
doi: 10.1016/j.ab.2015.04.010
R. Cariou, F. Larvor, F. Monteau, et al., Food Chem. 196 (2016) 211–219.
doi: 10.1016/j.foodchem.2015.09.045
Y. Liu, Y.X. Lai, G.J. Yang, et al., J. Biomed. Nanotechnol. 13 (2017) 1253–1259.
doi: 10.1166/jbn.2017.2424
H. Shi, T. Jin, J.W. Zhang, et al., Chin. Chem. Lett. 31 (2020) 155–158.
doi: 10.1016/j.cclet.2019.06.020
Y.J. Tang, Z.Y. Li, N.Y. He, et al., J. Biomed. Nanotechnol. 9 (2013) 312–317.
doi: 10.1166/jbn.2013.1493
Y. Liu, Y. Deng, H.M. Dong, et al., Sci. China Chem. 60 (2017) 329–337.
doi: 10.1007/s11426-016-0253-2
L. He, H.W. Yang, P.F. Xiao, et al., J. Biomed. Nanotechnol. 13 (2017) 1243–1252.
doi: 10.1166/jbn.2017.2422
M. Liu, A. Khan, Z.F. Wang, et al., Biosens. Bioelectron. 130 (2019) 174–184.
doi: 10.1016/j.bios.2019.01.006
N. Jaffrezic-Renault, J. Kou, D. Tan, Z.Z. Guo, Anal. Bioanal. Chem. 412 (2020) 5913–5923.
doi: 10.1007/s00216-020-02516-9
X.B. Mou, Z. Chen, T.T. Li, et al., J. Biomed. Nanotechnol. 15 (2019) 1832–1838.
doi: 10.1166/jbn.2019.2802
S.I. Kaya, A. Cetinkaya, N. K. Bakirhan, S.A. Ozkan, Trends Environ. Anal. Chem. 28 (2020) e100106.
Z.Y. Li, J.H. Wang, H.W. Yang, et al., J. Biomed. Nanotechnol. 13 (2017) 1272–1280.
doi: 10.1166/jbn.2017.2426
H. Xie, K.L. Di, R.R. Huang, et al., Chin. Chem. Lett. 31 (2020) 1737–1745.
doi: 10.1016/j.cclet.2020.02.049
H.W. Yang, W.B. Liang, J. Si, et al., J. Biomed. Nanotechnol. 10 (2014) 3610–3619.
doi: 10.1166/jbn.2014.2047
C.L. Tang, Z.Y. He, H.M. Liu, et al., J. Nanobiotechnol. 18 (2020) 62.
doi: 10.1186/s12951-020-00613-6
Y. Deng, W. Wang, C. Ma, Z.Y. Li, J. Biomed. Nanotechnol. 9 (2013) 1378–1382.
doi: 10.1166/jbn.2013.1633
G.J. Yang, Y.X. Lai, Z.Q. Xiao, et al., Chin. Chem. Lett. 29 (2018) 1857–1860.
doi: 10.1016/j.cclet.2018.11.030
Y. Deng, W. Wang, L.M. Zhang, et al., J. Biomed. Nanotechnol. 9 (2013) 318–321.
doi: 10.1166/jbn.2013.1487
J. Liu, S.A. Dong, Q.G. He, et al., Biomolecules 9 (2019) 245.
doi: 10.3390/biom9060245
Y.X. Lai, L.J. Wang, Y. Liu, et al., J. Biomed. Nanotechnol. 14 (2018) 44–65.
doi: 10.1166/jbn.2018.2505
W. Wang, Y. Deng, S. Li, et al., J. Biomed. Nanotechnol. 9 (2013) 736–740.
doi: 10.1166/jbn.2013.1577
Y.H. Zhang, Y.N. Lei, H. Lu, et al., Food Chem. 346 (2021) 128895.
doi: 10.1016/j.foodchem.2020.128895
Y. Liu, T.T. Li, C.X. Ling, et al., Chin. Chem. Lett. 30 (2019) 2211–2215.
doi: 10.1016/j.cclet.2019.05.020
X.Z. Feng, X.R. Su, A. Ferranco, et al., J. Biomed. Nanotechnol. 16 (2020) 29–39.
doi: 10.1166/jbn.2020.2879
Q. Wang, Q. Xue, T. Chen, et al., Chin. Chem. Lett. 32 (2021) 609–619.
doi: 10.1016/j.cclet.2020.10.025
Q.G. He, J. Liu, X.P. Liu, et al., Colloids Surf. B 172 (2018) 565–572.
doi: 10.1016/j.colsurfb.2018.09.005
Q.G. He, Y.L. Tian, Y.Y. Wu, et al., Biomolecules 9 (2019) 176.
doi: 10.3390/biom9050176
G.J. Yang, H. Huang, Z.Q. Xiao, et al., J. Biomed. Nanotechnol. 16 (2020) 548–552.
doi: 10.1166/jbn.2020.2909
A. Khanmohammadi, A.J. Ghazizadeh, P. Hashemi, et al., J. Iran. Chem. Soc. 17 (2020) 2429–2447.
doi: 10.1007/s13738-020-01940-z
Z.Y. Xu, X.X. Jiang, S.P. Liu, M.H. Yang, Chin. Chem. Lett. 31 (2020) 185–188.
doi: 10.1016/j.cclet.2019.04.026
Y. Liu, Y. Deng, T.T. Li, et al., J. Biomed. Nanotechnol. 14 (2018) 2156–2161.
doi: 10.1166/jbn.2018.2655
Z.X. Shi, G.K. Li, Y.F. Hu, Chin. Chem. Lett. 30 (2019) 1600–1606.
doi: 10.1016/j.cclet.2019.04.066
Q.G. He, J. Liu, X.P. Liu, et al., Electrochim. Acta 296 (2019) 683–692.
doi: 10.1016/j.electacta.2018.11.096
Y.L. Fang, H.R. Liu, Y. Wang, et al., J. Biomed. Nanotechnol. 17 (2021) 407–415.
doi: 10.1166/jbn.2021.3028
H. Chen, Y.Q. Wu, Z. Chen, et al., J. Biomed. Nanotechnol. 13 (2017) 1619–1630.
doi: 10.1166/jbn.2017.2478
Q.K. Zeng, X.L. Qi, M.Y. Zhang, et al., Int J. Biol. Macromol. 145 (2020) 1049–1058.
doi: 10.1016/j.ijbiomac.2019.09.197
J. Fu, Z. Dang, Y. Deng, et al., J. Biomed. Nanotechnol. 8 (2012) 669–675.
doi: 10.1166/jbn.2012.1427
Z.L. Ding, Y.L. Wang, Q. Zhou, et al., Biomolecules 10 (2019) 68.
doi: 10.3390/biom10010068
F. Li, Z.F. Wang, Y.F. Huang, et al., J. Biomed. Nanotechnol. 11 (2015) 1776–1782.
doi: 10.1166/jbn.2015.2151
M.A.A. Shah, N.Y. He, Z.Y. Li, et al., J. Biomed. Nanotechnol. 10 (2014) 2332–2349.
doi: 10.1166/jbn.2014.1981
Y.Y. Wu, P.H. Deng, Y.L. Tian, et al., J. Nanobiotechnol. 18 (2020) 112.
doi: 10.1186/s12951-020-00672-9
F. Magesa, Y.Y. Wu, S.A. Dong, et al., Biomolecules 10 (2020) 110.
doi: 10.3390/biom10010110
Y.J. Li, H.P. Dai, N.N. Feng, et al., Mater. Express. 9 (2019) 59–64.
doi: 10.1166/mex.2019.1470
H.W. Yang, M. Liu, H.R. Jiang, et al., J. Biomed. Nanotechnol. 13 (2017) 655–664.
doi: 10.1166/jbn.2017.2386
L.M. Zhang, K. Xia, Y.Y. Bai, et al., J. Biomed. Nanotechnol. 10 (2014) 1440–1449.
doi: 10.1166/jbn.2014.1932
Y.X. Liu, S. Zhang, X. Ren, et al., RSC Adv. 5 (2015) 57346–57353.
doi: 10.1039/C5RA07397A
A.I. Zia, A.R.M. Syaifudin, S.C. Mukhopadhyay, et al., J. Phys. Conf. Ser. 439 (2013) 012026.
doi: 10.1088/1742-6596/439/1/012026
Y.R. Liang, Z.M. Zhang, Z.J. Liu, et al., Biosens. Bioelectron. 91 (2017) 199–202.
doi: 10.1016/j.bios.2016.12.007
B.S. He, J.W. Li, Rare Met. 40 (2021) 1099–1109.
doi: 10.1007/s12598-020-01580-5
L.J. Xu, J.J. Du, Y. Deng, et al., J. Biomed. Nanotechnol. 8 (2012) 1006–1011.
doi: 10.1166/jbn.2012.1456
X.J. Li, J.F. Ping, Y.B. Ying, TrAC-Trend. Anal. Chem. 113 (2019) 1–12.
doi: 10.1016/j.trac.2019.01.008
S.Q. Xiong, J.J. Cheng, L.L. He, et al., Anal. Methods 6 (2014) 1736–1742.
doi: 10.1039/c3ay42039f
S.Q. Xiong, J.J. Cheng, L.L. He, et al., J. Electroanal. Chem. 743 (2015) 18–24.
doi: 10.1016/j.jelechem.2015.02.013
F.J. Xiao, M.Y. Guo, J.Z. Wang, et al., Anal. Chim. Acta 1043 (2018) 35–44.
doi: 10.1016/j.aca.2018.08.046
F.J. Xiao, X.R. Yan, H.L. Li, et al., Sens. Actuators B: Chem. 288 (2019) 476–485.
doi: 10.1016/j.snb.2019.03.037
X.Y. Jiang, Y.Q. Xie, D.J. Wan, et al., Sensors 20 (2020) 901.
doi: 10.3390/s20030901
J. Annamalai, N. Vasudevan, et al., Anal. Chim. Acta 1135 (2020) 175–186.
doi: 10.1016/j.aca.2020.09.041
J.W. Li, H.L. Jin, M. Wei, et al., Sens. Actuators B: Chem. 331 (2021) 129401.
doi: 10.1016/j.snb.2020.129401
Y.X. Lai, C.X. Zhang, Y. Deng, et al., Chin. Chem. Lett. 30 (2019) 160–162.
doi: 10.1016/j.cclet.2018.07.011
Y.Y. Wu, P.H. Deng, Y.L. Tian, et al., Bioelectrochemistry 131 (2020) 107393.
doi: 10.1016/j.bioelechem.2019.107393
Y.L. Tian, P.H. Deng, Y.Y. Wu, et al., Biomolecules 9 (2019) 294.
doi: 10.3390/biom9070294
Y.X. Lai, Y. Deng, G.J. Yang, et al., J. Biomed. Nanotechnol. 14 (2018) 1688–1694.
doi: 10.1166/jbn.2018.2617
D.R. Kumar, G. Dhakal, V.Q. Nguyen, J.J. Shim, Anal. Chim. Acta 1141 (2021) 71–82.
doi: 10.1016/j.aca.2020.10.014
J. Wackerlig, R. Schirhagl, Anal. Chem. 88 (2016) 250–261.
doi: 10.1021/acs.analchem.5b03804
T. Wu, X.P. Wei, X.H. Ma, J.P. Li, Microchim. Acta 184 (2017) 2901–2907.
doi: 10.1007/s00604-017-2281-5
X.Q. Li, L. Zhong, R.L. Liu, et al., Microchim. Acta 186 (2019) 688.
doi: 10.1007/s00604-019-3812-z
M. Panagiotopoulou, S. Kunath, P.X. Medina-Rangel, et al., Biosens. Bioelectron. 88 (2017) 85–93.
doi: 10.1016/j.bios.2016.07.080
J.J. BelBruno, Chem. Rev. 119 (2019) 94–119.
doi: 10.1021/acs.chemrev.8b00171
M. Yoshikawa, K. Tharpa, S.O. Dima, Chem. Rev. 116 (2016) 11500–11528.
doi: 10.1021/acs.chemrev.6b00098
A.I. Zia, S.C. Mukhopadhyay, P.L. Yu, et al., Biosens. Bioelectron. 67 (2015) 342–349.
doi: 10.1016/j.bios.2014.08.050
A. Adumitrăchioaie, M. Tertis, A. Cernat, et al., Int. J. Electrochem. Sci. 13 (2018) 2556–2576.
R.G. Gui, H. Jin, H.J. Guo, Z.H. Wang, Biosens. Bioelectron. 100 (2018) 56–70.
doi: 10.1016/j.bios.2017.08.058
J. He, R.H. Lv, J. Zhu, K. Lu, Anal, Chim. Acta 661 (2010) 215–221.
doi: 10.1016/j.aca.2009.12.029
I. Tabushi, K. Kurihara, K. Naka, et al., Tetrahedron Lett. 28 (1987) 4299–4302.
doi: 10.1016/S0040-4039(00)96490-6
K. Haupt, P.X. Medina Rangel, B.T.S. Bui, Chem. Rev. 120 (2020) 9554–9582.
doi: 10.1021/acs.chemrev.0c00428
S. Venkatesh, C.C. Yeung, Q.J. Sun, et al., Sens. Actuators B: Chem. 259 (2018) 650–657.
doi: 10.1016/j.snb.2017.12.107
X. Zhao, X. Ju, S. Qiu, et al., Russ. J. Electrochem. 54 (2018) 636–643.
doi: 10.1134/S1023193518080074
Z.H. Zhang, L.J. Luo, R. Cai, H.J. Chen, Biosens. Bioelectron. 49 (2013) 367–373.
doi: 10.1016/j.bios.2013.05.054
Y. Li, J.J. Kang, X.Y. Zhao, et al., Chem. J. Chin. Univ. 40 (2019) 448–455.
Q.T. Zhou, M. Guo, S.C. Wu, et al., J. Electroanal. Chem. 897 (2021) 115549.
doi: 10.1016/j.jelechem.2021.115549
L. Li, L.L. Yang, Z.L. Xing, et al., Analyst 138 (2013) 6962–6968.
doi: 10.1039/c3an01435e
C.X. Lu, Z.G. Tang, X.X. Gao, et al., Microchim. Acta 185 (2018) 373.
doi: 10.1007/s00604-018-2892-5
L.X. Chen, S.F. Xu, J. H. Li, Chem. Soc. Rev. 40 (2011) 2922–2942.
doi: 10.1039/c0cs00084a
T. Fan, W.M. Yang, N.W. Wang, et al., J. Appl. Polym. Sci. 133 (2016) 43484.
W.Z. Xu, X.M. Zhang, W.H. Huang, et al., Appl. Surf. Sci. 426 (2017) 1075–1083.
doi: 10.1016/j.apsusc.2017.07.241
X.J. Li, X.J. Wang, L.L. Li, et al., Talanta 131 (2015) 354–360.
doi: 10.1016/j.talanta.2014.07.028
Q.W. Chen, C. Yuan, C.Y. Zhai, et al., Chin. Chem. Lett. 33 (2022) 983–986.
doi: 10.1016/j.cclet.2021.07.047
P.W. Gao, Y.Z. Shen, C. Ma, et al., Analyst 146 (2021) 6178.
doi: 10.1039/D1AN01348C
Y.J. Tang, H.N. Liu, H. Chen, et al., J. Biomed. Nanotechnol. 16 (2020) 763–788.
doi: 10.1166/jbn.2020.2943
L. He, R.R. Huang, P.F. Xiao, et al., Chin. Chem. Lett. 32 (2021) 1593–1602.
doi: 10.1016/j.cclet.2020.12.054
W.F. Guo, C.X. Zhang, T.T. Ma, et al., J. Nanobiotechnol. 19 (2021) 166.
doi: 10.1186/s12951-021-00914-4
X.B. Mou, D.N. Sheng, Z. Chen, et al., J. Biomed. Nanotechnol. 15 (2019) 2393–2400.
doi: 10.1166/jbn.2019.2862
R.R. Huang, Z.S. Chen, M. Liu, et al., Sci. China Chem. 60 (2017) 786–792.
G.J. Yang, Y. Liu, Y. Deng, et al., J. Biomed. Nanotechnol. 17 (2021) 2240–2246.
doi: 10.1166/jbn.2021.3191
X.B. Mou, T.T. Li, J.H. Wang, et al., J. Biomed. Nanotechnol. 11 (2015) 2057–2066.
doi: 10.1166/jbn.2015.2113
K. Ikebukuro, C. Kiyohara, K. Sode, Anal. Lett. 37 (2004) 2901–2909.
doi: 10.1081/AL-200035778
M. Liu, L. Xi, T. Tan, et al., Chin. Chem. Lett. 32 (2021) 1726–1730.
doi: 10.1016/j.cclet.2020.11.072
H.N. Liu, H.M. Dong, Z. Chen, et al., J. Biomed. Nanotechnol. 13 (2017) 1333–1343.
doi: 10.1166/jbn.2017.2418
M. Liu, X.C. Yu, Z. Chen, et al., J. Nanobiotechnol. 15 (2017) 81.
doi: 10.1186/s12951-017-0311-4
C. Ma, C.Y. Li, F. Wang, et al., J. Biomed. Nanotechnol. 9 (2013) 703–709.
doi: 10.1166/jbn.2013.1566
S.I. Kaya, A. Cetinkaya, S.A. Ozkan, Crit. Rev. Anal. Chem. 51 (2021) 1–21.
doi: 10.1080/10408347.2019.1666249
Z.M. Li, Y. Yu, Z.L. Li, T. Wu, Anal. Bioanal. Chem. 407 (2015) 2711–2726.
doi: 10.1007/s00216-015-8530-8
A.S. Sadeghi, N. Ansari, M. Ramezani, et al., Biosens. Bioelectron. 118 (2018) 137–152.
doi: 10.1016/j.bios.2018.07.045
Z. Li, M.A. Mohamed, A.M. Vinu Mohan, et al., Sensors 19 (2019) 5435.
doi: 10.3390/s19245435
Y. Han, D.L. Diao, Z.W. Lu, et al., Anal. Chem. 89 (2017) 5270–5277.
doi: 10.1021/acs.analchem.6b04808
X. Wu, D.L. Diao, Z.W. Lu, et al., JoVE-J. Vis. Exp. 133 (2018) 56814.
Q. Lu, X.X. Liu, J.J. Hou, et al., Molecules 25 (2020) 747.
doi: 10.3390/molecules25030747
Y.Z. Shen, J. Guan, C. Ma, et al., Anal. Chem. 94 (2022) 1742–1751.
doi: 10.1021/acs.analchem.1c04348
L.B. Nie, F.H. Liu, P. Ma, X.Y. Xiao, J. Biomed. Nanotechnol. 10 (2014) 2700–2721.
doi: 10.1166/jbn.2014.1987
Y. Liu, T.T. Li, C.X. Ling, et al., Chin. Chem. Lett. 30 (2019) 2359–2362.
doi: 10.1016/j.cclet.2019.10.033
L. Gong, L. Zhao, M.D. Tan, et al., J. Biomed. Nanotechnol. 17 (2021) 509–528.
doi: 10.1166/jbn.2021.3052
N. Yan, J.L. Song, F.Y. Wang, et al., Chin. Chem. Lett. 30 (2019) 1984–1988.
doi: 10.1016/j.cclet.2019.09.039
Z.Y. He, Z.R. Tong, B.Y. Tan, et al., J. Biomed. Nanotechnol. 17 (2021) 1364–1370.
doi: 10.1166/jbn.2021.3111
H.L. Zhang, P.F. Xu, X.T. Zhang, et al., Chin. Chem. Lett. 31 (2020) 1083–1086.
doi: 10.1016/j.cclet.2019.10.005
H.M. Hu, L.L. Fan, X.J. Li, et al., J. Pharmaceut. Biomed. 75 (2013) 123–129.
doi: 10.1016/j.jpba.2012.11.010
S. Li, H.N. Liu, Y.Y. Jia, et al., J. Biomed. Nanotechnol. 9 (2013) 689–698.
doi: 10.1166/jbn.2013.1568
B. Liu, Y.Y. Jia, M. Ma, et al., J. Biomed. Nanotechnol. 9 (2013) 247–256.
doi: 10.1166/jbn.2013.1483
H. Yanagisawa, S. Fujimaki, Anal. Sci. 35 (2019) 1215–1219.
doi: 10.2116/analsci.19P165
B.J. Johnson, A.P. Malanoski, J.S. Erickson, Sensors 20 (2020) 5857.
doi: 10.3390/s20205857
R. Bala, R.K. Sharma, N. Wangoo, Anal. Bioanal. Chem. 408 (2016) 333–338.
doi: 10.1007/s00216-015-9085-4
K. Akshaya, C. Arthi, A.J. Pavithra, et al., Photodiagn. Photodyn. 30 (2020) 101699.
doi: 10.1016/j.pdpdt.2020.101699
S. Sun, S.H. Qian, J.P. Zheng, et al., Analyst 145 (2020) 6968–6973.
doi: 10.1039/D0AN01496F
H. Ahmadi, S. Keshipour, F. Ahour, Sci. Rep. 10 (2020) 14185.
doi: 10.1038/s41598-020-70821-5
L.H. Wu, S.L. Yao, H. Xu, et al., Chin. Chem. Lett. 33 (2022) 541–546.
doi: 10.1016/j.cclet.2021.06.009
J.X. Zhao, Z.W. Lu, S. Wang, et al., Anal. Chem. 93 (2021) 4317–4325.
doi: 10.1021/acs.analchem.0c05320
Y. Liu, G.J. Yang, T.T. Li, et al., Chin. Chem. Lett. 32 (2021) 1957–1962.
doi: 10.1016/j.cclet.2021.01.016
R.H. Guo, C.C. Shu, K.J. Chuang, G.B. Hong, Mater. Lett. 293 (2021) 129756.
doi: 10.1016/j.matlet.2021.129756
Y.M. Yan, Y. Qu, R. Du, et al., Anal. Methods 13 (2021) 5179.
doi: 10.1039/D1AY01464A
Y.T. Qin, Y. Wan, J. Guo, M.T. Zhao, Chin. Chem. Lett. 33 (2022) 693–702.
doi: 10.1016/j.cclet.2021.07.013
N.F. Zhu, Y.M. Zou, M.L. Huang, et al., Talanta 186 (2018) 104–109.
doi: 10.1016/j.talanta.2018.04.023
Z.W. Qiu, Y.T. Xue, J.Y. Li, et al., Chin. Chem. Lett. 32 (2021) 2807–2811.
doi: 10.1016/j.cclet.2021.02.029
M. Zhang, Y.Q. Liu, B.C. Ye, Chem. Commun. 47 (2011) 11849–11851.
doi: 10.1039/c1cc14772b
D. Seol, D. Jang, J.W. Oh, et al., Environ. Res. 170 (2019) 238–242.
doi: 10.1016/j.envres.2018.12.030
Y.F. Kang, L. Zhang, Q.H. Lai, et al., Polym-Plast. Tech. Mat. 60 (2021) 60–69.
T.T. Li, H. Yi, Y. Liu, et al., J. Biomed. Nanotechnol. 14 (2018) 150–160.
doi: 10.1166/jbn.2018.2491
L. Yu, Y.M. Qiao, L.X. Miao, et al., Chin. Chem. Lett. 29 (2018) 1545–1559.
doi: 10.1016/j.cclet.2018.09.005
J.Y. Lu, J.X. Wang, Y. Li, et al., Sens. Actuators B: Chem. 331 (2021) 129396.
doi: 10.1016/j.snb.2020.129396
H.R. Jiang, X. Zeng, Z.J. Xi, et al., J. Biomed. Nanotechnol. 9 (2013) 674–684.
doi: 10.1166/jbn.2013.1575
D.R. Cao, H. Meier, Chin. Chem. Lett. 30 (2019) 1758–1766.
doi: 10.1016/j.cclet.2019.06.026
W. Wei, J. Wang, C.B. Tian, et al., Analyst 143 (2018) 5481–5486.
doi: 10.1039/C8AN01606B
J.M. Yan, Y.N. Lu, S.W. Xie, et al., J. Biomed. Nanotechnol. 17 (2021) 312–321.
doi: 10.1166/jbn.2021.3034
T. Li, Z.K. Gao, N.W. Wang, et al., RSC Adv. 6 (2016) 54615–54622.
doi: 10.1039/C6RA04663K
S. Chen, J.L. Fu, S. Zhou, et al., Food Chem. 367 (2022) 130505.
doi: 10.1016/j.foodchem.2021.130505
W.Z. Xu, T. Li, W.H. Huang, et al., RSC Adv. 7 (2017) 51632–51639.
doi: 10.1039/C7RA09145A
Y.Y. Wang, Z.P. Zhou, W.Z. Xu, et al., Polym. Int. 67 (2018) 1003–1010.
doi: 10.1002/pi.5596
Z.P. Zhou, T. Li, W.Z. Xu, et al., Sens. Actuators B: Chem. 240 (2017) 1114–1122.
doi: 10.1016/j.snb.2016.09.092
X.M. Wang, C. Chen, Y.F. Chen, et al., Food Agr. Immunol. 31 (2020) 813–826.
doi: 10.1080/09540105.2020.1774746
Y.Y. Wang, W.T. Li, X.T. Hu, et al., Food Chem. 352 (2021) 129352.
doi: 10.1016/j.foodchem.2021.129352
H.J. Lim, A.R. Kim, M.Y. Yoon, Biosens. Bioelectron. 121 (2018) 1–9.
doi: 10.1016/j.bios.2018.08.065
J. Dolai, H. Ali, N.R. Jana, New J. Chem. 45 (2021) 19088.
doi: 10.1039/D1NJ04169J
C.K. Qiu, Y.J. Gong, Y.X. Guo, et al., Anal. Chem. 91 (2019) 13355–13359.
doi: 10.1021/acs.analchem.9b04277
B. Cromwell, M. Dubnicka, S. Dubrawski, et al., ACS Omega 4 (2019) 17009–17015.
doi: 10.1021/acsomega.9b02585
Y. Zhou, Z.F. Wang, Y.L. Peng, et al., J. Biomed. Nanotechnol. 17 (2021) 744–770.
doi: 10.1166/jbn.2021.3075
Y.S. Chen, S.L. Cheng, A.M. Zhang, et al., J. Biomed. Nanotechnol. 14 (2018) 1773–1784.
doi: 10.1166/jbn.2018.2621
J. Wang, Y.R. Zhou, Q.Q. Wang, et al., Chin. J. Anal. Chem. 48 (2020) 1625–1632.
Z.W. Zuo, K. Zhu, L.X. Ning, et al., Appl. Surf. Sci. 325 (2015) 45–51.
doi: 10.1016/j.apsusc.2014.10.181
Y.P. Wu, W.F. Yu, B.H. Yang, P. Li, Analyst 143 (2018) 2363–2368.
doi: 10.1039/C8AN00540K
Q. Cao, R.C. Che, ACS Appl. Mater. Interfaces 6 (2014) 7020–7027.
doi: 10.1021/am501898u
X.Y. Hu, X.R. Wang, Z.P. Ge, et al., Analyst 144 (2019) 3861–3869.
doi: 10.1039/C9AN00251K
Q.Q. Wang, J. Wang, M. Li, et al., Spectrochim. Acta A 248 (2021) 119131.
doi: 10.1016/j.saa.2020.119131
Y. Xiang, M.H. Li, X.Y. Guo, et al., Sens. Actuators B: Chem. 262 (2018) 44–49.
doi: 10.1016/j.snb.2018.01.196
J.N. Liu, J.Y. Li, F. Li, et al., Anal. Bioanal. Chem. 410 (2018) 5277–5285.
doi: 10.1007/s00216-018-1184-6
A. Aarthi, M. Umadevi, R. Parimaladevi, G.V. Sathe, J. Mol. Liq. 252 (2018) 97–102.
doi: 10.1016/j.molliq.2017.12.103
Q. An, P. Zhang, J.M. Li, Nanoscale 4 (2012) 5210–5216.
doi: 10.1039/c2nr31061a
Y.R. Zhou, J.Y. Li, L. Zhang, et al., Anal. Bioanal. Chem. 411 (2019) 5691–5701.
doi: 10.1007/s00216-019-01947-3
D.D. Tu, J.T. Garza, G.L. Cote, RSC Adv. 9 (2019) 2618–2625.
doi: 10.1039/C8RA09230C
Y.Y. Yang, Y.T. Li, X.J. Li, et al., Chem. Eng. J. 402 (2020) 125179.
doi: 10.1016/j.cej.2020.125179
Y.Y. Yang, Y.T. Li, W.L. Zhai, et al., Anal. Chem. 93 (2021) 946–955.
doi: 10.1021/acs.analchem.0c03652
J.Y. Li, X.Y. Hu, Y.R. Zhou, et al., ACS Appl. Nano Mater. 2 (2019) 2743–2751.
doi: 10.1021/acsanm.9b00258
Y.W. Rong, S.J. Ali, Q. Ouyang, et al., J. Food Compos. Anal. 100 (2021) 103929.
doi: 10.1016/j.jfca.2021.103929
D.Q. Chen, X.Y. Sun, K.H. Zhang, et al., Sensors 17 (2017) 1681.
M. Tang, Y.F. Wu, D.L. Deng, et al., Sens. Actuators B: Chem. 258 (2018) 304–312.
doi: 10.1016/j.snb.2017.11.120
S. Mohammadi, A.V. Nadaraja, D.J. Roberts, et al., Sens. Actuators A: Phys. 303 (2020) 111663.
doi: 10.1016/j.sna.2019.111663
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
Lin Guo , Rui Xu , Denys Makarov . Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics. Chinese Journal of Structural Chemistry, 2025, 44(2): 100428-100428. doi: 10.1016/j.cjsc.2024.100428
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Mengchen Liu , Yufei Zhang , Yi Xiao , Yang Wei , Meichen Bi , Huaide Jiang , Yan Yu , Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
Zhongxiong Sun , Haili Song , Mei-Huan Zhao , Yijie Zeng , Man-Rong Li . Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure. Chinese Journal of Structural Chemistry, 2025, 44(2): 100429-100429. doi: 10.1016/j.cjsc.2024.100429
Jiajing Wu , Ru-Ling Tang , Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Lihua Gao , Yinglei Han , Chensheng Lin , Huikang Jiang , Guang Peng , Guangsai Yang , Jindong Chen , Ning Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
Hongyuan Sha , Dongling Yang , Yanran Shang , Zujian Wang , Rongbing Su , Chao He , Xiaoming Yang , Xifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730