Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma
-
* Corresponding author.
E-mail address: p.zhang6@szu.edu.cn (P. Zhang).
Citation:
Shuangling Luo, Chao Liang, Qianling Zhang, Pingyu Zhang. Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma[J]. Chinese Chemical Letters,
;2023, 34(4): 107666.
doi:
10.1016/j.cclet.2022.07.009
T. Akinyemiju, S. Abera, M. Ahmed, et al., JAMA Oncol. 3 (2017) 1683–1691.
doi: 10.1001/jamaoncol.2017.3055
Y. Sun, L. Wu, Y. Zhong, et al., Cell 184 (2021) 404–421.
doi: 10.1016/j.cell.2020.11.041
A.S. Kekule, U. Lauer, M. Meyer, et al., Nature 343 (1990) 457–461.
doi: 10.1038/343457a0
R. Rudalska, D. Dauch, T. Longerich, et al., Nat. Med. 20 (2014) 1138–1146.
doi: 10.1038/nm.3679
J.M. Llovet, S. Ricci, V. Mazzaferro, et al., N. Engl. J. Med. 359 (2008) 378–390.
doi: 10.1056/NEJMoa0708857
M.M. Gounder, M.R. Mahoney, B.A. Van Tine, et al., N. Engl. J. Med. 379 (2018) 2417–2428.
doi: 10.1056/NEJMoa1805052
C. Wang, S. Vegna, H. Jin, et al., Nature 574 (2019) 268–272.
doi: 10.1038/s41586-019-1607-3
Z. Dong, L. Feng, Y. Hao, et al., J. Am. Chem. Soc. 140 (2018) 2165–2178.
doi: 10.1021/jacs.7b11036
B. Liu, C. Li, Z. Cheng, et al., Biomater. Sci. 4 (2016) 890–909.
doi: 10.1039/C6BM00076B
F. Liu, Y. Ma, L. Xu, et al., Biomater. Sci. 3 (2015) 1218–1227.
doi: 10.1039/C5BM00045A
Y.L. Hu, M. DeLay, A. Jahangiri, et al., Cancer Res. 72 (2012) 1773–1783.
doi: 10.1158/0008-5472.CAN-11-3831
D. Ackerman, M.C. Simon, Trends Cell Biol. 24 (2014) 472–478.
doi: 10.1016/j.tcb.2014.06.001
R.C. Ji, Cancer Lett. 346 (2014) 6–16.
doi: 10.1016/j.canlet.2013.12.001
P. Prasad, C.R. Gordijo, A.Z. Abbasi, et al., ACS Nano 8 (2014) 3202–3212.
doi: 10.1021/nn405773r
J. Dang, H. He, D. Chen, et al., Biomater. Sci. 5 (2017) 1500–1511.
doi: 10.1039/C7BM00392G
A. Rapisarda, G. Melillo, Nat. Rev. Clin. Oncol. 9 (2012) 378–390.
doi: 10.1038/nrclinonc.2012.64
A. Chowdhury, R. Dasgupta, Appl. Opt. 56 (2017) 439–445.
doi: 10.1364/AO.56.000439
S. Wang, F. Yuan, K. Chen, et al., Biomacromolecules 16 (2015) 2693–2700.
doi: 10.1021/acs.biomac.5b00571
G. Song, C. Liang, X. Yi, et al., Adv. Mater. 28 (2016) 2716–2723.
doi: 10.1002/adma.201504617
X. Song, J. Xu, C. Liang, et al., Nano Lett. 18 (2018) 6360–6368.
doi: 10.1021/acs.nanolett.8b02720
R. Zhang, X. Song, C. Liang, et al., Biomaterials 138 (2017) 13–21.
doi: 10.1016/j.biomaterials.2017.05.025
H. Wang, Y. Chao, J. Liu, et al., Biomaterials 181 (2018) 310–317.
doi: 10.1016/j.biomaterials.2018.08.011
X. Song, L. Feng, C. Liang, et al., Nano Res. 10 (2017) 1200–1212.
doi: 10.1007/s12274-016-1274-8
M.R. Junttila, F.J. de Sauvage, Nature 501 (2013) 346–354.
doi: 10.1038/nature12626
W.A. Denny, Lancet Oncol. 1 (2000) 25–29.
doi: 10.1016/S1470-2045(00)00006-1
G.J. Weiss, J.R. Infante, E.G. Chiorean, et al., Clin. Cancer Res. 17 (2011) 2997.
doi: 10.1158/1078-0432.CCR-10-3425
K.J. Williams, M.R. Albertella, B. Fitzpatrick, et al., Mol. Cancer Ther. 8 (2009) 3266.
doi: 10.1158/1535-7163.MCT-09-0396
L. Feng, L. Cheng, Z. Dong, et al., ACS Nano 11 (2017) 927–937.
doi: 10.1021/acsnano.6b07525
H. Zhao, B. Zhao, L. Li, et al., Adv. Healthc. Mater. 9 (2020) 1901335.
doi: 10.1002/adhm.201901335
C. Wu, Q. Liu, Y. Wang, et al., Chin. Chem. Lett. 32 (2021) 2400–2404.
doi: 10.1016/j.cclet.2021.02.060
Q. Zhu, X. Ling, Y. Yang, et al., Adv. Sci. 6 (2019) 1801899.
doi: 10.1002/advs.201801899
C. Zhang, J. Wu, W. Liu, et al., ACS Appl. Bio Mater. 3 (2020) 3817–3826.
doi: 10.1021/acsabm.0c00386
Z. Li, Q. Xu, X. Lin, et al., Chin. Chem. Lett. 33 (2022) 1875–1879.
doi: 10.1016/j.cclet.2021.10.077
J. Yan, Y. Zhang, L. Zheng, et al., Chin. Chem. Lett. 33 (2022) 767–772.
doi: 10.1016/j.cclet.2021.08.018
J. Zhao, W. Wu, J. Sun, et al., Chem. Soc. Rev. 42 (2013) 5323–5351.
doi: 10.1039/c3cs35531d
T. Yogo, Y. Urano, Y. Ishitsuka, et al., J. Am. Chem. Soc. 127 (2005) 12162–12163.
doi: 10.1021/ja0528533
S.G. Awuah, J. Polreis, V. Biradar, et al., Org. Lett. 13 (2011) 3884–3887.
doi: 10.1021/ol2014076
J.S. Nam, M.G. Kang, J. Kang, et al., J. Am. Chem. Soc. 138 (2016) 10968–10977.
doi: 10.1021/jacs.6b05302
L. He, M.F. Zhang, Z.Y. Pan, et al., Chem. Commun. 55 (2019) 10472–10475.
doi: 10.1039/C9CC04871E
J. Li, L. Zeng, K. Xiong, et al., Chem. Commun. 55 (2019) 10972–10975.
doi: 10.1039/C9CC05826E
S. Monro, K.L. Colón, H. Yin, et al., Chem. Rev. 119 (2019) 797–828.
doi: 10.1021/acs.chemrev.8b00211
C.P. Tan, Y.M. Zhong, L.N. Ji, et al., Chem. Sci. 12 (2021) 2357–2367.
doi: 10.1039/D0SC06885C
C. Imberti, P. Zhang, H. Huang, et al., Angew. Chem. Int. Ed. 59 (2020) 61–73.
doi: 10.1002/anie.201905171
X. Wang, X. Wang, S. Jin, et al., Chem. Rev. 119 (2019) 1138–1192.
doi: 10.1021/acs.chemrev.8b00209
C. Jin, F. Liang, J. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 15987–15991.
doi: 10.1002/anie.202006964
L. Hao, Z.W. Li, D. -. Y. Zhang, et al., Chem. Sci. 10 (2019) 1285–1293.
doi: 10.1039/C8SC04242J
P. Zhang, C.K.C. Chiu, H. Huang, et al., Angew. Chem. Int. Ed. 56 (2017) 14898–14902.
doi: 10.1002/anie.201709082
H. Huang, S. Banerjee, K. Qiu, et al., Nat. Chem. 11 (2019) 1041–1048.
doi: 10.1038/s41557-019-0328-4
C. Huang, C. Liang, T. Sadhukhan, et al., Angew. Chem. Int. Ed. 60 (2021) 9474–9479.
doi: 10.1002/anie.202015671
J. Zhu, A. Ouyang, Z. Shen, et al., Chin. Chem. Lett. 33 (2022) 1907–1912.
doi: 10.1016/j.cclet.2021.11.017
K.N. Wang, L.Y. Liu, G. Qi, et al., Adv. Sci. 8 (2021) 2004379.
doi: 10.1002/advs.202004379
Z. Fan, Y. Rong, T. Sadhukhan, et al., Angew. Chem. Int. Ed. 61 (2022) e202202098.
Q. Yang, H. Jin, Y. Gao, et al., ACS Appl. Mater. Interfaces 11 (2019) 15417–15425.
doi: 10.1021/acsami.9b04098
S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, et al., Cell 149 (2012) 1060–1072.
doi: 10.1016/j.cell.2012.03.042
W.S. Yang, R. SriRamaratnam, M.E. Welsch, et al., Cell 156 (2014) 317–331.
doi: 10.1016/j.cell.2013.12.010
V.E. Kagan, G. Mao, F. Qu, et al., Nat. Chem. Biol. 13 (2017) 81–90.
doi: 10.1038/nchembio.2238
D. Qi, L. Xing, L. Shen, et al., Chin. Chem. Lett. 33 (2022) 4595–4599.
doi: 10.1016/j.cclet.2022.03.105
X. Meng, J. Deng, F. Liu, et al., Nano Lett. 19 (2019) 7866–7876.
doi: 10.1021/acs.nanolett.9b02904
T. Liu, W. Liu, M. Zhang, et al., ACS Nano 12 (2018) 12181–12192.
doi: 10.1021/acsnano.8b05860
M.J. Hangauer, V.S. Viswanathan, M.J. Ryan, et al., Nature 551 (2017) 247–250.
doi: 10.1038/nature24297
L. Feng, M. Gao, D. Tao, et al., Adv. Funct. Mater. 26 (2016) 2207–2217.
doi: 10.1002/adfm.201504899
C.R. Nishida, P.R. Ortiz de Montellano, J. Med. Chem. 51 (2008) 5118–5120.
doi: 10.1021/jm800496s
S.M. Raleigh, E. Wanogho, M.D. Burke, et al., Int. J. Radiat. Oncol. Biol. Phys. 42 (1998) 763–767.
doi: 10.1016/S0360-3016(98)00308-3
H. Li, W. Shi, X. Li, et al., J. Am. Chem. Soc. 141 (2019) 18301–18307.
doi: 10.1021/jacs.9b09722
E.M. Kosower, N.S. Kosower, Meth. Enzymol. 251 (1995) 133–148.
G.L. Newton, R.C. Fahey, Meth. Enzymol. 251 (1995) 148–166.
Y. Zou, M.J. Palte, A.A. Deik, et al., Nat. Commun. 10 (2019) 1617.
doi: 10.1038/s41467-019-09277-9
T. Xu, Y. Ma, Q. Yuan, et al., ACS Nano 14 (2020) 3414–3425.
doi: 10.1021/acsnano.9b09426
R. Xu, J. Yang, Y. Qian, et al., Nanoscale Horiz. 6 (2021) 348–356.
doi: 10.1039/D0NH00674B
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
Yuequan Wang , Congtian Wu , Chengcheng Feng , Qin Chen , Zhonggui He , Shenwu Zhang , Cong Luo , Jin Sun . Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chinese Chemical Letters, 2025, 36(3): 109902-. doi: 10.1016/j.cclet.2024.109902
Wenbin Zhou , Yafei Gao , Xinyu Feng , Yanqing Zhang , Cong Yang , Lanxi He , Fenghe Zhang , Xiaoguang Li , Qing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763
Cheng-Zhe Gao , Hao-Ran Jia , Tian-Yu Wang , Xiao-Yu Zhu , Xiaofeng Han , Fu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840
Zhendong Liu , Sainan Liu , Bin Liu , Qi Meng , Meng Yuan , Chunzheng Yang , Yulong Bian , Ping'an Ma , Jun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626
Liangliang Jia , Ye Hong , Xinyu He , Ying Zhou , Liujiao Ren , Hongjun Du , Bin Zhao , Bin Qin , Zhe Yang , Di Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Tingting Hu , Chao Shen , Xueyan Wang , Fengbo Wu , Zhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Zheng-Biao Zou , Tai-Zong Wu , Chun-Lan Xie , Yuan Wang , Yan Li , Gang Zhang , Rong Chao , Lian-Zhong Luo , Li-Sheng Li , Xian-Wen Yang . neo-Dicitrinols A–C: Unprecedented PKS-NRPS hybrid citrinin dimers with ferroptosis inhibitory activity from the deep-sea-derived Penicillium citrinum W22. Chinese Chemical Letters, 2024, 35(12): 109723-. doi: 10.1016/j.cclet.2024.109723
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
Yueying Wang , Jianming Xiong , Linwei Xin , Yuanyuan Li , He Huang , Wenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452