Visible-light-enabled ruthenium-catalyzed para-C−H difluoroalkylation of anilides
-
* Corresponding author.
E-mail address: chemagh@163.com (G. An).
Citation:
Yaohang Cheng, Xian Zhang, Guanghui An, Guangming Li, Zhenyu Yang. Visible-light-enabled ruthenium-catalyzed para-C−H difluoroalkylation of anilides[J]. Chinese Chemical Letters,
;2023, 34(3): 107625.
doi:
10.1016/j.cclet.2022.06.048
J.A. Leitch, C.G. Frost, Chem. Soc. Rev. 46 (2017) 7145–7153.
doi: 10.1039/C7CS00496F
M.C. Kozlowski, Acc. Chem. Res. 50 (2017) 638–643.
doi: 10.1021/acs.accounts.6b00637
Q. Shao, K. Wu, Z. Zhuang, S. Qian, J.Q. Yu, Acc. Chem. Res. 53 (2020) 833–851.
doi: 10.1021/acs.accounts.9b00621
C. Ding, Y. Ren, C. Sun, J. Long, G. Yin, J. Am. Chem. Soc. 143 (2021) 20027–20034.
doi: 10.1021/jacs.1c09214
B. Zhao, Y. Li, H. Li, et al., Sci. Bull. 66 (2021) 570–577.
doi: 10.1016/j.scib.2020.10.001
P. Gandeepan, L. Ackermann, Chem 4 (2018) 199–222.
doi: 10.1016/j.chempr.2017.11.002
J. Börgel, T. Ritter, Chem 6 (2020) 1877–1887.
doi: 10.1016/j.chempr.2020.07.007
L. Ackermann, K. Korvorapun, R.C. Samanta, T. Rogge, Synthesis 53 (2021) 2911–2946
doi: 10.1055/a-1485-5156
U. Dutta, S. Maiti, T. Bhattacharya, D. Maiti, Science 372 (2021) eabd5992.
doi: 10.1126/science.abd5992
L. Ackermann, Acc. Chem. Res. 47 (2014) 281–295.
doi: 10.1021/ar3002798
K. Korvorapun, N. Kaplaneris, T. Rogge, et al., ACS Catal. 8 (2018) 886–892.
doi: 10.1021/acscatal.7b03648
Z. Gan, X. Zhu, Q. Yan, X. Song, D. Yang, Chin. Chem. Lett. 32 (2021) 1705–1708.
doi: 10.1016/j.cclet.2020.12.046
Q. Yan, W. Cui, J. Li, et al., Org. Chem. Front. 9 (2022) 2653–2658.
doi: 10.1039/d1qo01910d
D. Yang, Q. Yan, E. Zhu, J. Lv, W.M. He, Chin. Chem. Lett. 33 (2022) 1798–1816.
doi: 10.1016/j.cclet.2021.09.068
X. Zhu, M. Jiang, X. Li, et al., Org. Chem. Front. 9 (2022) 347–355.
doi: 10.1039/d1qo01570b
G.B. Boursalian, W.S. Ham, A.R. Mazzotti, T. Ritter, Nat. Chem. 8 (2016) 810–815.
doi: 10.1038/nchem.2529
C.L. Ciana, R.J. Phipps, J.R. Brandt, F.M. Meyer, M.J. Gaunt, Angew. Chem. Int. Ed. 50 (2011) 458–462.
doi: 10.1002/anie.201004703
N.A. Romero, K.A. Margrey, N.E. Tay, D.A. Nicewicz, Science 349 (2015) 1326–1330.
doi: 10.1126/science.aac9895
S. Bag, T. Patra, A. Modak, et al., J. Am. Chem. Soc. 137 (2015) 11888–11891.
doi: 10.1021/jacs.5b06793
M.E. Hoque, R. Bisht, C. Haldar, B. Chattopadhyay, J. Am. Chem. Soc. 139 (2017) 7745–7748.
doi: 10.1021/jacs.7b04490
G. Meng, N.Y.S. Lam, E.L. Lucas, et al., J. Am. Chem. Soc. 142 (2020) 10571–10591.
doi: 10.1021/jacs.0c04074
T. Patra, S. Bag, R. Kancherla, et al., Angew. Chem. Int. Ed. 55 (2016) 7751–7755.
doi: 10.1002/anie.201601999
B.E. Haines, Y. Saito, Y. Segawa, K. Itami, D.G. Musaev, ACS Catal. 6 (2016) 7536–7546.
doi: 10.1021/acscatal.6b02317
H. Qiao, S. Sun, F. Yang, et al., Org. Lett. 17 (2015) 6086–6089.
doi: 10.1021/acs.orglett.5b03114
Y. Saito, Y. Segawa, K. Itami, J. Am. Chem. Soc. 137 (2015) 5193–5198.
doi: 10.1021/jacs.5b02052
C. Tian, X. Yao, W. Ji, et al., Eur. J. Org. Chem. 2018 (2018) 5972–5979.
doi: 10.1002/ejoc.201801058
X.G. Wang, Y. Li, L.L. Zhang, et al., Chem. Commun. 54 (2018) 9541–9544.
doi: 10.1039/C8CC05067H
C. Yuan, L. Zhu, C. Chen, et al., Nat. Commun. 9 (2018) 1189.
doi: 10.1038/s41467-018-03341-6
C. Yuan, L. Zhu, R. Zeng, Y. Lan, Y. Zhao, Angew. Chem., Int. Ed. 57 (2018) 1277–1281.
doi: 10.1002/anie.201711221
B. Berzina, I. Sokolovs, E. Suna, ACS Catal. 5 (2015) 7008–7014.
doi: 10.1021/acscatal.5b01992
J.A. Leitch, C.L. McMullin, A.J. Paterson, et al., Angew. Chem., Int. Ed. 56 (2017) 15131–15135.
doi: 10.1002/anie.201708961
J.M. Li, Y.H. Wang, Y. Yu, et al., ACS Catal. 7 (2017) 2661–2667.
doi: 10.1021/acscatal.6b03671
S. Liang, M. Bolte, G. Manolikakes, Chem. Eur. J. 23 (2017) 96–100.
doi: 10.1002/chem.201605101
J. Wang, Y.B. Pang, N. Tao, R. Zeng, Y. Zhao, Org. Lett. 22 (2020) 854–857.
doi: 10.1021/acs.orglett.9b04327
X. Wang, D. Leow, J.Q. Yu, J. Am. Chem. Soc. 133 (2011) 13864–13867.
doi: 10.1021/ja206572w
Y. Han, G. Li, L. Liu, et al., Org. Chem. Front. 7 (2020) 1823–1827.
doi: 10.1039/d0qo00402b
P. Liu, C. Chen, X. Cong, J. Tang, X. Zeng, Nat. Commun. 9 (2018) 4637.
doi: 10.1038/s41467-018-07069-1
P. Liu, N. Hao, D. Yang, et al., Org. Chem. Front. 8 (2021) 2442–2448.
doi: 10.1039/d1qo00243k
S. Okumura, Y. Nakao, Org. Lett. 19 (2017) 584–587.
doi: 10.1021/acs.orglett.6b03741
S. Okumura, S. Tang, T. Saito, et al., J. Am. Chem. Soc. 138 (2016) 14699–14704.
doi: 10.1021/jacs.6b08767
L. Yang, K. Semba, Y. Nakao, Angew. Chem., Int. Ed. 56 (2017) 4853–4857.
doi: 10.1002/anie.201701238
C. Yuan, P. Dai, X. Bao, Y. Zhao, Org. Lett. 21 (2019) 6481–6484.
doi: 10.1021/acs.orglett.9b02362
S. Okumura, T. Komine, E. Shigeki, K. Semba, Y. Nakao, Angew. Chem., Int. Ed. 57 (2018) 929–932.
doi: 10.1002/anie.201710520
M.O. Anderson, J. Zhang, Y. Liu, et al., J. Med. Chem. 55 (2012) 5942–5950.
doi: 10.1021/jm300491y
J.O. Link, J.G. Taylor, L. Xu, et al., J. Med. Chem. 57 (2014) 2033–2046.
doi: 10.1021/jm401499g
N.A. Meanwell, J. Med. Chem. 54 (2011) 2529–2591.
doi: 10.1021/jm1013693
S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320–330.
doi: 10.1039/B610213C
Z.X. Ruan, S.K. Zhang, C.J. Zhu, et al., Angew. Chem. Int. Ed. 56 (2017) 2045–2049.
doi: 10.1002/anie.201611595
Z. Feng, Y.L. Xiao, X. Zhang, Acc. Chem. Res. 51 (2018) 2264–2278.
doi: 10.1021/acs.accounts.8b00230
Y. Cheng, Y. He, J. Zheng, et al., Chin. Chem. Lett. 32 (2021) 1437–1441.
doi: 10.1016/j.cclet.2020.09.044
W.T. Fan, Y. Li, D. Wang, S.J. Ji, Y. Zhao, J. Am. Chem. Soc. 142 (2020) 20524–20530.
doi: 10.1021/jacs.0c09545
X. Fang, Y. Tan, L. Gu, L. Ackermann, W. Ma, ChemCatChem 13 (2021) 1738–1742.
doi: 10.1002/cctc.202002056
Y.J. Mao, B.X. Wang, Q.Z. Wu, et al., Chem. Commun. 55 (2019) 2019–2022.
doi: 10.1039/c8cc09129c
G. Tu, D. Wang, C. Yuan, J. Zhang, Y. Zhao, J. Org. Chem. 85 (2020) 10740–10749.
doi: 10.1021/acs.joc.0c01257
G. Tu, C. Yuan, Y. Li, J. Zhang, Y. Zhao, Angew. Chem., Int. Ed. 57 (2018) 15597–15601.
doi: 10.1002/anie.201809788
W.K. Tang, F. Tang, J. Xu, et al., Chem. Commun. 56 (2020) 1497–1500.
doi: 10.1039/c9cc09586a
J. Zhou, F. Wang, Z. Lin, et al., Org. Lett. 22 (2020) 68–72.
doi: 10.1021/acs.orglett.9b03923
P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr, L. Ackermann, Angew. Chem. Int. Ed. 58 (2019) 9820–9825.
doi: 10.1002/anie.201902258
A. Sagadevan, M.F. Greaney, Angew. Chem. Int. Ed. 58 (2019) 9826–9830.
doi: 10.1002/anie.201904288
J. Gao, Y.H. Guo, Y.P. Wang, X.J. Wang, W.S. Xiang, Chin. Chem. Lett. 22 (2011) 1159–1162.
Q. Yu, L. a. Hu, Y. Wang, S. Zheng, J. Huang, Angew. Chem. Int. Ed. 54 (2015) 15284–15288.
doi: 10.1002/anie.201507100
G. Marinescu, D.C. Culita, C. Romanitan, et al., Appl. Surf. Sci. 520 (2020) 146379.
doi: 10.1016/j.apsusc.2020.146379
B.A. Lakshmi, J.Y. Bae, J.H. An, S. Kim, Inorg. Chim. Acta 495 (2019) 118989.
doi: 10.1016/j.ica.2019.118989
Z. Qu, K. Wu, W. Meng, et al., Chem. Eng. J. 397 (2020) 125416.
doi: 10.1016/j.cej.2020.125416
K. Korvorapun, J. Struwe, R. Kuniyil, et al., Angew. Chem. Int. Ed. 59 (2020) 18103–18109.
doi: 10.1002/anie.202003035
A. Sagadevan, A. Charitou, F. Wang, et al., Chem. Sci. 11 (2020) 4439–4443.
doi: 10.1039/d0sc01289k
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Yue Sun , Liming Yang , Yaohang Cheng , Guanghui An , Guangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679