Tuning the hydrogen and hydroxyl adsorption on Ru nanoparticles for hydrogen electrode reactions via size controlling
-
* Corresponding author.
E-mail address: wangdl81125@hust.edu.cn (D. Wang).
Citation:
Zhengrong Li, Lulu An, Min Song, Tonghui Zhao, Jingjing Zhang, Chang Zhang, Zhizhan Li, Deli Wang. Tuning the hydrogen and hydroxyl adsorption on Ru nanoparticles for hydrogen electrode reactions via size controlling[J]. Chinese Chemical Letters,
;2023, 34(4): 107622.
doi:
10.1016/j.cclet.2022.06.045
L. An, X. Zhao, T. Zhao, et al., Energy Environ. Sci. 14 (2021) 2620–2638.
doi: 10.1039/D0EE03609A
Y. Zhao, X. Wang, Z. Li, et al., Chin. Chem. Lett. 33 (2022) 1065–1069.
doi: 10.1016/j.cclet.2021.05.038
Y. Men, J. Su, X. Wang, et al., Chin. Chem. Lett. 30 (2019) 634–637.
doi: 10.1016/j.cclet.2018.11.010
T. Zhao, G. Wang, M. Gong, et al., ACS Catal. 10 (2020) 15207–15216.
doi: 10.1021/acscatal.0c03938
W. Sheng, Z. Zhuang, M. Gao, et al., Nat. Commun. 6 (2015) 5848–5854.
doi: 10.1038/ncomms6848
W. Sheng, H.A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 157 (2010) 1529–1536.
doi: 10.1149/1.3483106
J. Durst, A. Siebel, C. Simon, et al., Energy Environ. Sci. 7 (2014) 2255–2260.
doi: 10.1039/C4EE00440J
E.S. Davydova, S. Mukerjee, F. Jaouen, et al., ACS Catal. 8 (2018) 6665–6690.
doi: 10.1021/acscatal.8b00689
J. Wang, X. Dong, J. Liu, et al., ACS Catal. 11 (2021) 7422–7428.
doi: 10.1021/acscatal.1c01284
J. Wang, J. Liu, B. Zhang, et al., J. Mater. Chem. A 9 (2021) 22934–22942.
doi: 10.1039/D1TA06995K
W. Sheng, M. Myint, J.G. Chen, et al., Energy Environ. Sci. 6 (2013) 1509–1512.
doi: 10.1039/c3ee00045a
Y. Zheng, Y. Jiao, Y. Zhu, et al., J. Am. Chem. Soc. 138 (2016) 16174–16181.
doi: 10.1021/jacs.6b11291
N. Danilovic, R. Subbaraman, D. Strmcnik, et al., Angew. Chem. 51 (2012) 12495–12498.
doi: 10.1002/anie.201204842
J. Ohyama, D. Kumada, A. Satsuma, J. Mater. Chem. A 4 (2016) 15980–15985.
doi: 10.1039/C6TA05517F
S. St. John, R.W. Atkinson, R.R. Unocic, et al., J. Phys. Chem. C 119 (2015) 13481–13487.
doi: 10.1021/acs.jpcc.5b03284
Y. Xue, L. Shi, X. Liu, et al., Nat. Commun. 11 (2020) 5651–5659.
doi: 10.1038/s41467-020-19413-5
H.A. Gasteiger, N.M. Markovic, P.N. Ross, J. Phys. Chem. 99 (1995) 16757–16767.
doi: 10.1021/j100045a042
N.M. Markovia, S.T. Sarraf, H.A. Gasteiger, et al., J. Chem. Soc. Faraday Trans. 92 (1996) 3719–3725.
doi: 10.1039/FT9969203719
J. Ohyama, T. Sato, Y. Yamamoto, et al., J. Am. Chem. Soc. 135 (2013) 8016–8021.
doi: 10.1021/ja4021638
Y. Zhao, Y. Luo, X. Yang, et al., J. Hazard. Mater. 332 (2017) 124–131.
doi: 10.1016/j.jhazmat.2017.03.004
S.H. Joo, J.Y. Park, J.R. Renzas, et al., Nano Lett. 10 (2010) 2709–2713.
doi: 10.1021/nl101700j
O. Antoine, Y. Bultel, R. Durand, et al., Electrochim. Acta 43 (1998) 3681–3691.
doi: 10.1016/S0013-4686(98)00126-1
Y. Sun, Y. Dai, Y. Liu, et al., Phys. Chem. Chem. Phys. 14 (2012) 2278–2285.
doi: 10.1039/c2cp22761d
J. Zheng, Z. Zhuang, B. Xu, et al., ACS Catal. 5 (2015) 4449–4455.
doi: 10.1021/acscatal.5b00247
J. Zheng, S. Zhou, S. Gu, et al., J. Electrochem. Soc. 163 (2016) 499–506.
doi: 10.1149/2.0661606jes
M. Gong, J. Zhu, M. Liu, et al., Nanoscale 11 (2019) 20301–20306.
doi: 10.1039/C9NR04975D
Y. Zhao, X. Wang, G. Cheng, et al., ACS Catal. 10 (2020) 11751–11757.
doi: 10.1021/acscatal.0c03148
H. Song, M. Wu, Z. Tang, et al., Angew. Chem. Int. Ed. 60 (2021) 7234–7244.
doi: 10.1002/anie.202017102
T. Li, H. Lin, X. Ouyang, et al., ACS Catal. 9 (2019) 5828–5836.
doi: 10.1021/acscatal.9b01452
J. Wang, Z. Wei, S. Mao, et al., Energy Environ. Sci. 11 (2018) 800–806.
doi: 10.1039/C7EE03345A
K. Qadir, S.H. Joo, B.S. Mun, et al., Nano Lett. 12 (2012) 5761–5768.
doi: 10.1021/nl303072d
S. Mao, C. Wang, Y. Wang, J. Catal. 375 (2019) 456–465.
doi: 10.1016/j.jcat.2019.06.039
K. Kusada, H. Kobayashi, R. Ikeda, et al., J. Am. Chem. Soc. 136 (2014) 1864–1871.
doi: 10.1021/ja409464g
L. Zeng, H. Peng, W. Liu, et al., J. Power Sources 461 (2020) 228147–228154.
doi: 10.1016/j.jpowsour.2020.228147
Y. Li, J. Abbott, Y. Sun, et al., Appl. Catal. B 258 (2019) 117952.
doi: 10.1016/j.apcatb.2019.117952
H. Inoue, J.X. Wang, K. Sasaki, et al., J. Electroanal. Chem. 554-555 (2003) 77–85.
doi: 10.1016/S0022-0728(03)00077-9
C. Xu, M. Mei, Q. Wang, et al., J. Mater. Chem. A 6 (2018) 14380–14386.
doi: 10.1039/C8TA03572E
Y.J. Wang, N. Zhao, B. Fang, et al., Chem. Rev. 115 (2015) 3433–3467.
doi: 10.1021/cr500519c
H. Wang, H.D. Abruna, J. Am. Chem. Soc. 139 (2017) 6807–6810.
doi: 10.1021/jacs.7b02434
S. St. John, R.W. Atkinson, K.A. Unocic, et al., ACS Catal. 5 (2015) 7015–7023.
doi: 10.1021/acscatal.5b01432
Y. Cong, B. Yi, Y. Song, Nano Energy 44 (2018) 288–303.
doi: 10.1016/j.nanoen.2017.12.008
M.A. Lukowski, A.S. Daniel, F. Meng, et al., J. Am. Chem. Soc. 135 (2013) 10274–10277.
doi: 10.1021/ja404523s
J. Zheng, J. Nash, B. Xu, et al., J. Electrochem. Soc. 165 (2018) 27–29.
T. Zhao, D. Xiao, Y. Chen, et al., J. Energy Chem. 61 (2021) 15–22.
doi: 10.1016/j.jechem.2020.12.008
Y. Wang, G. Wang, G. Li, et al., Energy Environ. Sci. 8 (2015) 177–181.
doi: 10.1039/C4EE02564D
L. Zhuang, J. Jin, H.D. Abruña, J. Am. Chem. Soc. 129 (2007) 11033–11035.
doi: 10.1021/ja0724792
Y. Liu, X. Li, Q. Zhang, et al., Angew. Chem. 59 (2020) 1718–1726.
doi: 10.1002/anie.201913910
Y. Liu, Q. Feng, W. Liu, et al., Nano Energy 81 (2021) 105641.
doi: 10.1016/j.nanoen.2020.105641
Q. Zhou, Q. Bian, L. Liao, et al., Chin. Chem. Lett. 34 (2023) 107248.
doi: 10.1016/j.cclet.2022.02.053
J. Zeng, L. Zhang, Q. Zhou, et al., Small 18 (2022) e2104624.
doi: 10.1002/smll.202104624
M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, et al., Nat. Mater. 14 (2015) 1245–1251.
doi: 10.1038/nmat4410
D. Li, L. Liao, H. Zhou, et al., Mater. Today Phys. 16 (2021) 100314.
Q. Zhou, L. Liao, Q. Bian, et al., Small 18 (2022) e2105642.
doi: 10.1002/smll.202105642
E. Demir, S. Akbayrak, A.M. Onal, et al., J. Colloid Interface Sci. 531 (2018) 570–577.
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429