Enhanced removal of phosphonates from aqueous solution using PMS/UV/hydrated zirconium oxide process
-
* Corresponding author.
E-mail address: bimingliu@tsinghua.edu.cn (B. Liu).
Citation:
Shunlong Pan, Xi Nie, Xinrui Guo, Hao Hu, Biming Liu, Yongjun Zhang. Enhanced removal of phosphonates from aqueous solution using PMS/UV/hydrated zirconium oxide process[J]. Chinese Chemical Letters,
;2023, 34(4): 107620.
doi:
10.1016/j.cclet.2022.06.043
S. Sun, S. Wang, Y. Ye, B. Pan, Water Res. 153 (2019) 21–28.
doi: 10.1016/j.watres.2019.01.007
E. Rott, R. Minke, U. Bali, H. Steinmetz, Water Res. 122 (2017) 345–354.
doi: 10.1016/j.watres.2017.06.009
S. Wang, S. Sun, C. Shan, B. Pan, Water Res. 161 (2019) 78–88.
doi: 10.1016/j.watres.2019.05.099
X. Zhang, J. Li, W.Y. Fan, G.P. Sheng, Environ. Sci. Technol. 53 (2019) 4997–5004.
doi: 10.1021/acs.est.9b00348
Z. Wang, G. Chen, S. Patton, et al., Water Res. 159 (2019) 30–37.
doi: 10.1016/j.watres.2019.04.051
Q. Wang, Y. Shao, N. Gao, et al., Chem. Eng. J. 304 (2016) 201–208.
doi: 10.1016/j.cej.2016.06.092
R. Altaf, X. Lin, M.A. Tadda, S. Zhu, D. Liu, J. Clean. Prod. 278 (2021) 123960.
doi: 10.1016/j.jclepro.2020.123960
E. Rott, M. Nouri, C. Meyer, et al., Water Res. 145 (2018) 608–617.
doi: 10.1016/j.watres.2018.08.067
E. Rott, R. Minke, H. Steinmetz, J. Water Process Eng. 17 (2017) 188–196.
doi: 10.1016/j.jwpe.2017.04.008
Y. Liu, X. He, Y. Fu, D.D. Dionysiou, J. Hazard. Mater. 305 (2016) 229–239.
doi: 10.1016/j.jhazmat.2015.11.043
S. Wacławek, H.V. Lutze, K. Grübel, et al., Chem. Eng. J. 330 (2017) 44–62.
doi: 10.1016/j.cej.2017.07.132
Y.H. Guan, J. Ma, X.C. Li, J.Y. Fang, L.W. Chen, Environ. Sci. Technol. 45 (2011) 9308–9314.
doi: 10.1021/es2017363
X. Zhang, J. Yao, Z. Zhao, J. Liu, Chem. Eng. J. 364 (2019) 1–10.
doi: 10.1016/j.cej.2019.01.029
P. Hu, M. Long, Appl. Catal. B: Environ. 181 (2016) 103–117.
doi: 10.1016/j.apcatb.2015.07.024
B. Pan, Z. Li, Y. Zhang, et al., Chem. Eng. J. 248 (2014) 290–296.
doi: 10.1016/j.cej.2014.02.093
Y. Su, H. Cui, Q. Li, S. Gao, J.K. Shang, Water Res. 47 (2013) 5018–5026.
doi: 10.1016/j.watres.2013.05.044
L. Fang, B. Wu, I.M.C. Lo, Chem. Eng. J. 319 (2017) 258–267.
doi: 10.1016/j.cej.2017.03.012
D.P. Van Vuuren, A.F. Bouwman, A.H.W. Beusen, Glob. Environ. Chang. 20 (2010) 428–439.
doi: 10.1016/j.gloenvcha.2010.04.004
T. Zeng, X. Zhang, S. Wang, H. Niu, Y. Cai, Environ. Sci. Technol. 49 (2015) 2350–2357.
doi: 10.1021/es505014z
X. Liu, F. Huang, Y. Yu, et al., Appl. Catal. B: Environ. 253 (2019) 149–159.
doi: 10.1016/j.apcatb.2019.04.047
G.X. Huang, C.Y. Wang, C.W. Yang, P.C. Guo, H.Q. Yu, Environ. Sci. Technol. 51 (2017) 12611–12618.
doi: 10.1021/acs.est.7b03007
Q. Yi, J. Ji, B. Shen, et al., Environ. Sci. Technol. 53 (2019) 9725–9733.
doi: 10.1021/acs.est.9b01676
Y. Gao, Y. Zhu, L. Lyu, et al., Environ. Sci. Technol. 52 (2018) 14371–14380.
doi: 10.1021/acs.est.8b05246
J. Liu, J. Zhou, Z. Ding, et al., Ultrason. Sonochem. 34 (2017) 953–959.
doi: 10.1016/j.ultsonch.2016.08.005
C. Liu, L. Liu, X. Tian, et al., Appl. Catal. B: Environ. 255 (2019) 117763.
doi: 10.1016/j.apcatb.2019.117763
W.D. Oh, Z. Dong, T.T. Lim, Appl. Catal. B: Environ. 194 (2016) 169–201.
doi: 10.1016/j.apcatb.2016.04.003
A. Sarkar, S.K. Biswas, P. Pramanik, J. Mater. Chem. 20 (2010) 4417–4424.
doi: 10.1039/b925379c
S. Khan, X. He, J.A. Khan, et al., Chem. Eng. J. 318 (2017) 135–142.
doi: 10.1016/j.cej.2016.05.150
M. Li, B. Zhang, S. Zou, Q. Liu, M. Yang, J. Hazard. Mater. 384 (2020) 121386.
doi: 10.1016/j.jhazmat.2019.121386
B. Nowack, A.T. Stone, Water Res. 40 (2006) 2201–2209.
doi: 10.1016/j.watres.2006.03.018
S. Xiao, M. Cheng, H. Zhong, et al., Chem. Eng. J. 384 (2020) 123265.
doi: 10.1016/j.cej.2019.123265
Y. Wu, Y. Shi, H. Chen, J. Zhao, W. Dong, Process Saf. Environ. Prot. 116 (2018) 468–476.
doi: 10.1016/j.psep.2018.03.020
H. Gao, J. Chen, Y. Zhang, X. Zhou, Chem. Eng. J. 306 (2016) 522–530.
doi: 10.1016/j.cej.2016.07.080
S. Yang, P. Wang, X. Yang, et al., J. Hazard. Mater. 179 (2010) 552–558.
doi: 10.1016/j.jhazmat.2010.03.039
N. Liu, F. Ding, C.H. Weng, C.C. Hwang, Y.T. Lin, J. Environ. Manag. 206 (2018) 565–576.
doi: 10.1016/j.jenvman.2017.11.006
C. Luo, J. Ma, J. Jiang, et al., Water Res. 80 (2015) 99–108.
doi: 10.1016/j.watres.2015.05.019
L. Wang, W. Liu, T. Wang, J. Ni, Chem. Eng. J. 225 (2013) 153–163.
doi: 10.1016/j.cej.2013.03.081
R. Li, J.J. Wang, B. Zhou, et al., Sci. Total Environ. 559 (2016) 121–129.
doi: 10.1016/j.scitotenv.2016.03.151
H. Li, J. Wan, Y. Ma, Y. Wang, Z. Guan, RSC Adv. 5 (2015) 99935–99943.
doi: 10.1039/C5RA16094D
B. Lin, M. Hua, Y.Y. Zhang, et al., Chemosphere 166 (2017) 422–430.
doi: 10.1016/j.chemosphere.2016.09.104
J. Luo, X. Luo, J. Crittenden, et al., Environ. Sci. Technol. 49 (2015) 11115–11124.
doi: 10.1021/acs.est.5b02903
M. Mallet, K. Barthelemy, C. Ruby, A. Renard, S. Naille, J. Colloid Interface Sci. 407 (2013) 95–101.
doi: 10.1016/j.jcis.2013.06.049
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
Ke Gong , Jinghan Liao , Jiangtao Lin , Quan Wang , Zhihua Wu , Liting Wang , Jiali Zhang , Yi Dong , Yourong Duan , Jianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473