BODIPY-based supramolecular fluorescent metallacages
-
* Corresponding authors.
E-mail addresses: qinyihuaxue@126.com (Y. Qin), 51174300063@stu.ecnu.edu.cn (P. Jia), lxu@chem.ecnu.edu.cn (L. Xu).
Citation:
Yute Wang, Yi Qin, Xiaoli Zhao, Peipei Jia, Zhiyong Zeng, Lin Xu. BODIPY-based supramolecular fluorescent metallacages[J]. Chinese Chemical Letters,
;2023, 34(3): 107576.
doi:
10.1016/j.cclet.2022.05.090
M. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res. 38 (2005) 369–378.
doi: 10.1021/ar040153h
R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Chem. Rev. 111 (2011) 6810–6918.
doi: 10.1021/cr200077m
W.X. Gao, H.N. Zhang, G.X. Jin, Coord. Chem. Rev. 386 (2019) 69–84.
doi: 10.1016/j.ccr.2019.01.023
H. Ube, K. Endo, H. Sato, M. Shionoya, J. Am. Chem. Soc. 141 (2019) 10384–10389.
doi: 10.1021/jacs.9b04123
J.L. Zhu, D. Zhang, T.K. Ronson, et al., Angew. Chem. Int. Ed. 60 (2021) 11789–11792.
doi: 10.1002/anie.202102095
X. Yan, T.R. Cook, P. Wang, F. Huang, P.J. Stang, Nat. Chem. 7 (2015) 342–348.
doi: 10.1038/nchem.2201
M. Yoshizawa, L. Catti, Acc. Chem. Res. 52 (2019) 2392–2404.
doi: 10.1021/acs.accounts.9b00301
D. Luo, X.Z. Wang, C. Yang, X.P. Zhou, D. Li, J. Am. Chem. Soc. 140 (2018) 118–121.
doi: 10.1021/jacs.7b11285
R.J. Li, J.J. Holstein, W.G. Hiller, J. Andréasson, G.H. Clever, J. Am. Chem. Soc. 141 (2019) 2097–2103.
doi: 10.1021/jacs.8b11872
T. Kim, N. Singh, J. Oh, et al., J. Am. Chem. Soc. 138 (2016) 8368–8371.
doi: 10.1021/jacs.6b04545
Y. Wang, Q. Zhou, X. He, et al., Chin. Chem. Lett. 33 (2022) 1613–1618.
doi: 10.1016/j.cclet.2021.09.048
X.Z. Li, L.P. Zhou, L.L. Yan, et al., J. Am. Chem. Soc. 139 (2017) 8237–8244.
doi: 10.1021/jacs.7b02764
L. Catti, H. Narita, Y. Tanaka, et al., J. Am. Chem. Soc. 143 (2021) 9361–9367.
doi: 10.1021/jacs.0c13172
W. Cullen, M.C. Misuraca, C.A. Hunter, N.H. Williams, M.D. Ward, Nat. Chem. 8 (2016) 231–236.
doi: 10.1038/nchem.2452
K. Li, K. Wu, Y.L. Lu, et al., Angew. Chem. Int. Ed. 61 (2022) e202114070.
X. Gao, Z. Cui, Y.R. Shen, et al., J. Am. Chem. Soc. 143, (2021) 17833–17842.
doi: 10.1021/jacs.1c09333
Q. Ling, T. Cheng, S. Tan, J. Huang, L. Xu, Chin. Chem. Lett. 31 (2020) 2884–2890.
doi: 10.1016/j.cclet.2020.08.020
G. Li, Z. Zhou, C. Yuan, et al., Angew. Chem. Int. Ed. 59 (2020) 10013–10017.
doi: 10.1002/anie.202000078
P.P. Jia, L. Xu, Y.X. Hu, et al., J. Am. Chem. Soc. 143 (2021) 399–408.
doi: 10.1021/jacs.0c11370
M. Yamashina, Y. Tanaka, R. Lavendomme, et al., Nature 574 (2019) 511–515.
doi: 10.1038/s41586-019-1661-x
S. Hasegawa, S.L. Meichsner, J.J. Holstein, et al., J. Am. Chem. Soc. 143 (2021) 9718–9723.
doi: 10.1021/jacs.1c02860
Y.X. Hu, P.P. Jia, C.W. Zhang, et al., Org. Chem. Front. 8 (2021) 5250–5257.
doi: 10.1039/d1qo00771h
P. Howlader, S. Mondal, S. Ahmed, P.S. Mukherjee, J. Am. Chem. Soc. 142 (2020) 20968–20972.
doi: 10.1021/jacs.0c11011
J.L. Zhu, L. Xu, Y.Y. Ren, et al., Nat. Commun. 10 (2019) 4285.
doi: 10.1038/s41467-019-12204-7
H. Duan, Y. Li, Q. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 10101–10110.
doi: 10.1002/anie.201912730
X. Liu, Y. Qin, J. Zhu, et al., Chin. Chem. Lett. 32 (2021) 1537-1540.
doi: 10.1016/j.cclet.2020.10.012
H.K. Li, H.L. Ye, X.X. Zhao, et al., Chin. Chem. Lett. 32 (2021) 2851-2855.
doi: 10.1016/j.cclet.2021.02.042
E.G. Percástegui, T.K. Ronson, J.R. Nitschke, Chem. Rev. 120 (2020) 13480-13544.
doi: 10.1021/acs.chemrev.0c00672
S. Pullen, G.H. Clever, Acc. Chem. Res. 51 (2018) 3052–3064.
doi: 10.1021/acs.accounts.8b00415
M. Pan, K. Wu, J.H. Zhang, C.Y. Su, Coord. Chem. Rev. 378 (2019) 333–349.
doi: 10.1016/j.ccr.2017.10.031
M.D. Ward, C.A. Hunter, N.H. Williams, Acc. Chem. Res. 51 (2018) 2073–2082.
doi: 10.1021/acs.accounts.8b00261
X. Li, J. Zheng, W. Liu, et al., Chin. Chem. Lett. 31 (2020) 2937-2940.
doi: 10.1016/j.cclet.2020.05.043
C.M. Hong, R.G. Bergman, K.N. Raymond, F.D. Toste, Acc. Chem. Res. 51 (2018) 2447–2455.
doi: 10.1021/acs.accounts.8b00328
H. Chen, W. Chen, Y. Lin, et al., Chin. Chem. Lett. 32 (2021) 2359-2368.
doi: 10.1016/j.cclet.2021.03.020
Y.X. Hu, X. Hao, L. Xu, et al., J. Am. Chem. Soc. 142 (2020) 6285–6294.
doi: 10.1021/jacs.0c00698
Q. Qi, S. Jiang, Q. Qiao, et al., Chin. Chem. Lett. 31 (2020) 2985-2987.
doi: 10.1016/j.cclet.2020.05.044
Z. Zhang, Z. Zhao, L. Wu, et al., J. Am. Chem. Soc. 142 (2020) 2592–2600.
doi: 10.1021/jacs.9b12689
M.L. Saha, X. Yan, P.J. Stang, Acc. Chem. Res. 49 (2016) 2527–2539.
doi: 10.1021/acs.accounts.6b00416
X. Jing, C. He, L. Zhao, C. Duan, Acc. Chem. Res. 52 (2019) 100–109.
doi: 10.1021/acs.accounts.8b00463
T. Liang, P. Yang, T. Wu, et al., Chin. Chem. Lett. 31 (2020) 2975-2979.
doi: 10.1016/j.cclet.2020.07.012
C. Mu, Z. Zhang, Y. Hou, et al., Angew. Chem. Int. Ed. 60 (2021) 12293–12297.
doi: 10.1002/anie.202100463
C. Yan, L. Shi, Z. Guo, W. Zhu, Chin. Chem. Lett. 30 (2019) 1849-1855.
doi: 10.1016/j.cclet.2019.08.038
H. Zhu, Q. Li, B. Shi, et al., Angew. Chem. Int. Ed. 59 (2020) 20208–20214.
doi: 10.1002/anie.202009442
W. Zhou, X. Fang, Q. Qiao, et al., Chin. Chem. Lett. 32 (2021) 943-946.
doi: 10.1016/j.cclet.2021.02.003
J. Zhao, Z. Zhou, P.J. Stang, X. Yan, Natl. Sci. Rev. 8 (2021) nwab045.
doi: 10.1093/nsr/nwab045
C. Li, B. Zhang, Y. Dong, et al., Dalton Trans. 49 (2020) 8051–8055.
doi: 10.1039/d0dt00469c
L. Xu, Y.X. Wang, H.B. Yang, Dalton Trans. 44 (2015) 867–890.
doi: 10.1039/C4DT02996H
H.Y. Lin, L.Y. Zhou, L. Xu, Chem. Asian J. 16 (2021) 3805–3816.
doi: 10.1002/asia.202100942
H. Lu, J. Mack, Y. Yang, Z. Shen, Chem. Soc. Rev. 43 (2014) 4778–4823.
doi: 10.1039/C4CS00030G
A.N. Bismillah, I. Aprahamian, Chem. Soc. Rev. 50 (2021) 5631–5649.
doi: 10.1039/d1cs00122a
Z. Shi, X. Han, W. Hu, et al., Chem. Soc. Rev. 49 (2020) 7533–7567.
doi: 10.1039/d0cs00234h
X.X. Chen, L.Y. Niu, N. Shao, Q.Z. Yang, Anal. Chem. 91 (2019) 4301–4306.
doi: 10.1021/acs.analchem.9b00169
M.Q. Wang, J.J. Gao, Q.Q. Yu, H.B. Liu, New J. Chem. 44 (2020) 13557–13564.
doi: 10.1039/d0nj02887h
G. Gupta, Y. Sun, A. Das, P.J. Stang, C.Y. Lee, Coord. Chem. Rev. 452 (2022) 214308.
doi: 10.1016/j.ccr.2021.214308
S. Cherumukkil, G. Das, R.P.N. Tripathi, et al., Adv. Funct. Mater. 32 (2022) 2109041.
doi: 10.1002/adfm.202109041
F.Z. Li, J.F. Yin, G.C. Kuang, Coord. Chem. Rev. 448 (2021) 214157.
doi: 10.1016/j.ccr.2021.214157
P. Chinapang, H. Iwami, T. Enomoto, et al., Inorg. Chem. 60 (2021) 12634–12643.
doi: 10.1021/acs.inorgchem.1c01279
J. Zhou, Y. Zhang, G. Yu, et al., J. Am. Chem. Soc. 140 (2018) 7730–7736.
doi: 10.1021/jacs.8b04929
C. Li, P.P. Jia, Y.L. Xu, et al., Sci. China Chem. 64 (2021) 134–142.
doi: 10.1007/s11426-020-9856-7
G. Li, X. Zhang, W. Zhao, et al., ACS Appl. Mater. Interfaces 12 (2020) 20180–20190.
doi: 10.1021/acsami.0c01695
Y. Qin, X. Liu, P.P. Jia, L. Xu, H.B. Yang, Chem. Soc. Rev. 49 (2020) 5678–5703.
doi: 10.1039/c9cs00797k
D. Zhang, T.K. Ronson, J.R. Nitschke, Acc. Chem. Res. 51 (2018) 2423–2436.
doi: 10.1021/acs.accounts.8b00303
P.P. Neelakandan, A. Jiménez, J.R. Nitschke, Chem. Sci. 5 (2014) 908–915.
doi: 10.1039/C3SC53172D
L.K.S. von Krbek, D.A. Roberts, B.S. Pilgrim, C.A. Schalley, J.R. Nitschke, Angew. Chem. Int. Ed. 57 (2018) 14121–14124.
doi: 10.1002/anie.201808534
P.P. Neelakandan, J.D. T A. Jiménez, J.R. Nitschke, Angew. Chem. Int. Ed. 54 (2015) 14378–14382.
doi: 10.1002/anie.201507045
Y.R. Hristova, M.M.J. Smulders, J.K. Clegg, B. Breiner, J.R. Nitschke, Chem. Sci. 2 (2011) 638–641.
doi: 10.1039/C0SC00495B
C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91 (1991) 165.
doi: 10.1021/cr00002a004
A.J. Musser, P.P. Neelakandan, J.M. Richter, et al., J. Am. Chem. Soc. 139 (2017) 12050–12059.
doi: 10.1021/jacs.7b06709
P.D. Frischmann, V. Kunz, F. Würthner, Angew. Chem. Int. Ed. 54 (2015) 7285–7289.
doi: 10.1002/anie.201501670
P.D. Frischmann, V. Kunz, V. Stepanenko, F. Würthner, Chem. Eur. J. 21 (2015) 2766–2769.
doi: 10.1002/chem.201405866
M. Zhang, M.L. Saha, M. Wang, et al., J. Am. Chem. Soc. 139 (2017) 5067–5074.
doi: 10.1021/jacs.6b12536
M. Käseborn, J.J. Holstein, G.H. Clever, A. Lützen, Angew. Chem. Int. Ed. 57 (2018) 12171–12175.
doi: 10.1002/anie.201806814
B. Woods, D. Döllerer, B. Aikman, et al., J. Inorg. Biochem. 199 (2019) 110781.
doi: 10.1016/j.jinorgbio.2019.110781
Xinyu Hu , Bo Song , Shukai Song , Qinghui Ling , Bangkun Yue , Lianrui Hu , Feifei Wang , Li He , Lin Xu . Development of luminescent metallohelicate as a selective chloride transporter. Chinese Chemical Letters, 2025, 36(12): 110918-. doi: 10.1016/j.cclet.2025.110918
Xing-Cheng Hu , Qiu-Shui Mu , Shu-Jin Bao , Yan Zou , Xin-Yu Wang , Guo-Xin Jin . Ligand conformational adaptability modulated self-assembly of Solomon links (412) and trefoil knots (31). Chinese Journal of Structural Chemistry, 2025, 44(10): 100712-100712. doi: 10.1016/j.cjsc.2025.100712
Xiao-Qian Wan , Ya-Ning Xu , Jian-Xin Yang , Dan Tian , Li-Long Dang , Feng Bai , Lu-Fang Ma . Structural optimization of organometallic cages for enhanced photothermal solar water evaporation. Chinese Journal of Structural Chemistry, 2025, 44(10): 100705-100705. doi: 10.1016/j.cjsc.2025.100705
Pei-Pei Jia , Yi-Xiong Hu , Zhen-Chen Lou , Xuelei Ji , Xing-Dong Xu , Haitao Sun , Tongxia Jin , Feng Zheng , Lin Xu . Construction of BODIPY-based triangular metallacycles with tunable photosensitization efficiency. Chinese Chemical Letters, 2025, 36(11): 110835-. doi: 10.1016/j.cclet.2025.110835
Ying Xu , Yan Pu , Qiong Zhang , Xi Kang , Manzhou Zhu . Order-by-order control over the nonlinear optical properties of atomically precise nanoclusters. Chinese Journal of Structural Chemistry, 2025, 44(10): 100735-100735. doi: 10.1016/j.cjsc.2025.100735
Yuyao Guan , Baoting Yu , Jun Ding , Tingting Sun , Zhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324
Yueyan Zhang , Zhihai Yang , Xia Suo , Ruicheng Wang , Xuewei Nie , Zafar Mahmood , Yanping Huo , Shi-Jian Su , Shaomin Ji . Tailoring luminescence properties of NIR-BODIPY emitters through donor engineering and intramolecular conformational locking for high-performance solution-processed OLEDs. Chinese Chemical Letters, 2025, 36(12): 111071-. doi: 10.1016/j.cclet.2025.111071
Ying Zhao , Yao He , Jian-Xin Yang , Wen-Jie Liu , Dan Tian , Francisco Aznarez , Le-Le Gong , Li-Long Dang , Lu-Fang Ma . Controllable self-assembly and photothermal conversion of metalla[2]catenanes induced by synergistic effect of free radicals and stacking interactions. Chinese Chemical Letters, 2025, 36(12): 111460-. doi: 10.1016/j.cclet.2025.111460
Hao Zhang , Hao Liu , Ke Huang , Qingxiu Xia , Hongjie Xiong , Xiaohui Liu , Hui Jiang , Xuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Junqing Wu , Yiyang Zhang , Qingqing Hong , Hui Yang , Lifeng Zhang , Ming Zhang , Lei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165
Yue Li , Qianyu Ding , Wansheng Liu , Yimeng Sun , Liyao Liu , Ye Zou , Yutao Cui , Jia Zhu , Chongan Di , Daoben Zhu . Bipyridine-bridged Φ-shaped cyclo[8]thiophene[2]pyrrole: Synthesis and fluorescence properties. Chinese Chemical Letters, 2026, 37(2): 111989-. doi: 10.1016/j.cclet.2025.111989
Beitong Zhu , Xiaorui Yang , Lirong Jiang , Tianhong Chen , Shuangfei Wang , Lintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
Ying Wang , Hong Yang , Caixia Zhu , Qing Hong , Xuwen Cao , Kaiyuan Wang , Yuan Xu , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641