BODIPY-based supramolecular fluorescent metallacages
-
* Corresponding authors.
E-mail addresses: qinyihuaxue@126.com (Y. Qin), 51174300063@stu.ecnu.edu.cn (P. Jia), lxu@chem.ecnu.edu.cn (L. Xu).
Citation:
Yute Wang, Yi Qin, Xiaoli Zhao, Peipei Jia, Zhiyong Zeng, Lin Xu. BODIPY-based supramolecular fluorescent metallacages[J]. Chinese Chemical Letters,
;2023, 34(3): 107576.
doi:
10.1016/j.cclet.2022.05.090
M. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res. 38 (2005) 369–378.
doi: 10.1021/ar040153h
R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Chem. Rev. 111 (2011) 6810–6918.
doi: 10.1021/cr200077m
W.X. Gao, H.N. Zhang, G.X. Jin, Coord. Chem. Rev. 386 (2019) 69–84.
doi: 10.1016/j.ccr.2019.01.023
H. Ube, K. Endo, H. Sato, M. Shionoya, J. Am. Chem. Soc. 141 (2019) 10384–10389.
doi: 10.1021/jacs.9b04123
J.L. Zhu, D. Zhang, T.K. Ronson, et al., Angew. Chem. Int. Ed. 60 (2021) 11789–11792.
doi: 10.1002/anie.202102095
X. Yan, T.R. Cook, P. Wang, F. Huang, P.J. Stang, Nat. Chem. 7 (2015) 342–348.
doi: 10.1038/nchem.2201
M. Yoshizawa, L. Catti, Acc. Chem. Res. 52 (2019) 2392–2404.
doi: 10.1021/acs.accounts.9b00301
D. Luo, X.Z. Wang, C. Yang, X.P. Zhou, D. Li, J. Am. Chem. Soc. 140 (2018) 118–121.
doi: 10.1021/jacs.7b11285
R.J. Li, J.J. Holstein, W.G. Hiller, J. Andréasson, G.H. Clever, J. Am. Chem. Soc. 141 (2019) 2097–2103.
doi: 10.1021/jacs.8b11872
T. Kim, N. Singh, J. Oh, et al., J. Am. Chem. Soc. 138 (2016) 8368–8371.
doi: 10.1021/jacs.6b04545
Y. Wang, Q. Zhou, X. He, et al., Chin. Chem. Lett. 33 (2022) 1613–1618.
doi: 10.1016/j.cclet.2021.09.048
X.Z. Li, L.P. Zhou, L.L. Yan, et al., J. Am. Chem. Soc. 139 (2017) 8237–8244.
doi: 10.1021/jacs.7b02764
L. Catti, H. Narita, Y. Tanaka, et al., J. Am. Chem. Soc. 143 (2021) 9361–9367.
doi: 10.1021/jacs.0c13172
W. Cullen, M.C. Misuraca, C.A. Hunter, N.H. Williams, M.D. Ward, Nat. Chem. 8 (2016) 231–236.
doi: 10.1038/nchem.2452
K. Li, K. Wu, Y.L. Lu, et al., Angew. Chem. Int. Ed. 61 (2022) e202114070.
X. Gao, Z. Cui, Y.R. Shen, et al., J. Am. Chem. Soc. 143, (2021) 17833–17842.
doi: 10.1021/jacs.1c09333
Q. Ling, T. Cheng, S. Tan, J. Huang, L. Xu, Chin. Chem. Lett. 31 (2020) 2884–2890.
doi: 10.1016/j.cclet.2020.08.020
G. Li, Z. Zhou, C. Yuan, et al., Angew. Chem. Int. Ed. 59 (2020) 10013–10017.
doi: 10.1002/anie.202000078
P.P. Jia, L. Xu, Y.X. Hu, et al., J. Am. Chem. Soc. 143 (2021) 399–408.
doi: 10.1021/jacs.0c11370
M. Yamashina, Y. Tanaka, R. Lavendomme, et al., Nature 574 (2019) 511–515.
doi: 10.1038/s41586-019-1661-x
S. Hasegawa, S.L. Meichsner, J.J. Holstein, et al., J. Am. Chem. Soc. 143 (2021) 9718–9723.
doi: 10.1021/jacs.1c02860
Y.X. Hu, P.P. Jia, C.W. Zhang, et al., Org. Chem. Front. 8 (2021) 5250–5257.
doi: 10.1039/d1qo00771h
P. Howlader, S. Mondal, S. Ahmed, P.S. Mukherjee, J. Am. Chem. Soc. 142 (2020) 20968–20972.
doi: 10.1021/jacs.0c11011
J.L. Zhu, L. Xu, Y.Y. Ren, et al., Nat. Commun. 10 (2019) 4285.
doi: 10.1038/s41467-019-12204-7
H. Duan, Y. Li, Q. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 10101–10110.
doi: 10.1002/anie.201912730
X. Liu, Y. Qin, J. Zhu, et al., Chin. Chem. Lett. 32 (2021) 1537-1540.
doi: 10.1016/j.cclet.2020.10.012
H.K. Li, H.L. Ye, X.X. Zhao, et al., Chin. Chem. Lett. 32 (2021) 2851-2855.
doi: 10.1016/j.cclet.2021.02.042
E.G. Percástegui, T.K. Ronson, J.R. Nitschke, Chem. Rev. 120 (2020) 13480-13544.
doi: 10.1021/acs.chemrev.0c00672
S. Pullen, G.H. Clever, Acc. Chem. Res. 51 (2018) 3052–3064.
doi: 10.1021/acs.accounts.8b00415
M. Pan, K. Wu, J.H. Zhang, C.Y. Su, Coord. Chem. Rev. 378 (2019) 333–349.
doi: 10.1016/j.ccr.2017.10.031
M.D. Ward, C.A. Hunter, N.H. Williams, Acc. Chem. Res. 51 (2018) 2073–2082.
doi: 10.1021/acs.accounts.8b00261
X. Li, J. Zheng, W. Liu, et al., Chin. Chem. Lett. 31 (2020) 2937-2940.
doi: 10.1016/j.cclet.2020.05.043
C.M. Hong, R.G. Bergman, K.N. Raymond, F.D. Toste, Acc. Chem. Res. 51 (2018) 2447–2455.
doi: 10.1021/acs.accounts.8b00328
H. Chen, W. Chen, Y. Lin, et al., Chin. Chem. Lett. 32 (2021) 2359-2368.
doi: 10.1016/j.cclet.2021.03.020
Y.X. Hu, X. Hao, L. Xu, et al., J. Am. Chem. Soc. 142 (2020) 6285–6294.
doi: 10.1021/jacs.0c00698
Q. Qi, S. Jiang, Q. Qiao, et al., Chin. Chem. Lett. 31 (2020) 2985-2987.
doi: 10.1016/j.cclet.2020.05.044
Z. Zhang, Z. Zhao, L. Wu, et al., J. Am. Chem. Soc. 142 (2020) 2592–2600.
doi: 10.1021/jacs.9b12689
M.L. Saha, X. Yan, P.J. Stang, Acc. Chem. Res. 49 (2016) 2527–2539.
doi: 10.1021/acs.accounts.6b00416
X. Jing, C. He, L. Zhao, C. Duan, Acc. Chem. Res. 52 (2019) 100–109.
doi: 10.1021/acs.accounts.8b00463
T. Liang, P. Yang, T. Wu, et al., Chin. Chem. Lett. 31 (2020) 2975-2979.
doi: 10.1016/j.cclet.2020.07.012
C. Mu, Z. Zhang, Y. Hou, et al., Angew. Chem. Int. Ed. 60 (2021) 12293–12297.
doi: 10.1002/anie.202100463
C. Yan, L. Shi, Z. Guo, W. Zhu, Chin. Chem. Lett. 30 (2019) 1849-1855.
doi: 10.1016/j.cclet.2019.08.038
H. Zhu, Q. Li, B. Shi, et al., Angew. Chem. Int. Ed. 59 (2020) 20208–20214.
doi: 10.1002/anie.202009442
W. Zhou, X. Fang, Q. Qiao, et al., Chin. Chem. Lett. 32 (2021) 943-946.
doi: 10.1016/j.cclet.2021.02.003
J. Zhao, Z. Zhou, P.J. Stang, X. Yan, Natl. Sci. Rev. 8 (2021) nwab045.
doi: 10.1093/nsr/nwab045
C. Li, B. Zhang, Y. Dong, et al., Dalton Trans. 49 (2020) 8051–8055.
doi: 10.1039/d0dt00469c
L. Xu, Y.X. Wang, H.B. Yang, Dalton Trans. 44 (2015) 867–890.
doi: 10.1039/C4DT02996H
H.Y. Lin, L.Y. Zhou, L. Xu, Chem. Asian J. 16 (2021) 3805–3816.
doi: 10.1002/asia.202100942
H. Lu, J. Mack, Y. Yang, Z. Shen, Chem. Soc. Rev. 43 (2014) 4778–4823.
doi: 10.1039/C4CS00030G
A.N. Bismillah, I. Aprahamian, Chem. Soc. Rev. 50 (2021) 5631–5649.
doi: 10.1039/d1cs00122a
Z. Shi, X. Han, W. Hu, et al., Chem. Soc. Rev. 49 (2020) 7533–7567.
doi: 10.1039/d0cs00234h
X.X. Chen, L.Y. Niu, N. Shao, Q.Z. Yang, Anal. Chem. 91 (2019) 4301–4306.
doi: 10.1021/acs.analchem.9b00169
M.Q. Wang, J.J. Gao, Q.Q. Yu, H.B. Liu, New J. Chem. 44 (2020) 13557–13564.
doi: 10.1039/d0nj02887h
G. Gupta, Y. Sun, A. Das, P.J. Stang, C.Y. Lee, Coord. Chem. Rev. 452 (2022) 214308.
doi: 10.1016/j.ccr.2021.214308
S. Cherumukkil, G. Das, R.P.N. Tripathi, et al., Adv. Funct. Mater. 32 (2022) 2109041.
doi: 10.1002/adfm.202109041
F.Z. Li, J.F. Yin, G.C. Kuang, Coord. Chem. Rev. 448 (2021) 214157.
doi: 10.1016/j.ccr.2021.214157
P. Chinapang, H. Iwami, T. Enomoto, et al., Inorg. Chem. 60 (2021) 12634–12643.
doi: 10.1021/acs.inorgchem.1c01279
J. Zhou, Y. Zhang, G. Yu, et al., J. Am. Chem. Soc. 140 (2018) 7730–7736.
doi: 10.1021/jacs.8b04929
C. Li, P.P. Jia, Y.L. Xu, et al., Sci. China Chem. 64 (2021) 134–142.
doi: 10.1007/s11426-020-9856-7
G. Li, X. Zhang, W. Zhao, et al., ACS Appl. Mater. Interfaces 12 (2020) 20180–20190.
doi: 10.1021/acsami.0c01695
Y. Qin, X. Liu, P.P. Jia, L. Xu, H.B. Yang, Chem. Soc. Rev. 49 (2020) 5678–5703.
doi: 10.1039/c9cs00797k
D. Zhang, T.K. Ronson, J.R. Nitschke, Acc. Chem. Res. 51 (2018) 2423–2436.
doi: 10.1021/acs.accounts.8b00303
P.P. Neelakandan, A. Jiménez, J.R. Nitschke, Chem. Sci. 5 (2014) 908–915.
doi: 10.1039/C3SC53172D
L.K.S. von Krbek, D.A. Roberts, B.S. Pilgrim, C.A. Schalley, J.R. Nitschke, Angew. Chem. Int. Ed. 57 (2018) 14121–14124.
doi: 10.1002/anie.201808534
P.P. Neelakandan, J.D. T A. Jiménez, J.R. Nitschke, Angew. Chem. Int. Ed. 54 (2015) 14378–14382.
doi: 10.1002/anie.201507045
Y.R. Hristova, M.M.J. Smulders, J.K. Clegg, B. Breiner, J.R. Nitschke, Chem. Sci. 2 (2011) 638–641.
doi: 10.1039/C0SC00495B
C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91 (1991) 165.
doi: 10.1021/cr00002a004
A.J. Musser, P.P. Neelakandan, J.M. Richter, et al., J. Am. Chem. Soc. 139 (2017) 12050–12059.
doi: 10.1021/jacs.7b06709
P.D. Frischmann, V. Kunz, F. Würthner, Angew. Chem. Int. Ed. 54 (2015) 7285–7289.
doi: 10.1002/anie.201501670
P.D. Frischmann, V. Kunz, V. Stepanenko, F. Würthner, Chem. Eur. J. 21 (2015) 2766–2769.
doi: 10.1002/chem.201405866
M. Zhang, M.L. Saha, M. Wang, et al., J. Am. Chem. Soc. 139 (2017) 5067–5074.
doi: 10.1021/jacs.6b12536
M. Käseborn, J.J. Holstein, G.H. Clever, A. Lützen, Angew. Chem. Int. Ed. 57 (2018) 12171–12175.
doi: 10.1002/anie.201806814
B. Woods, D. Döllerer, B. Aikman, et al., J. Inorg. Biochem. 199 (2019) 110781.
doi: 10.1016/j.jinorgbio.2019.110781
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Beitong Zhu , Xiaorui Yang , Lirong Jiang , Tianhong Chen , Shuangfei Wang , Lintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Junqing Wu , Yiyang Zhang , Qingqing Hong , Hui Yang , Lifeng Zhang , Ming Zhang , Lei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
Ying Wang , Hong Yang , Caixia Zhu , Qing Hong , Xuwen Cao , Kaiyuan Wang , Yuan Xu , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
Ziyou Zhang , Te Ji , Hongliang Dong , Zhiqiang Chen , Zhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Xu Qu , Pengzhao Wu , Kaixuan Duan , Guangwei Wang , Liang-Liang Gao , Yuan Guo , Jianjian Zhang , Donglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972