Applications of metal nanoparticles/metal-organic frameworks composites in sensing field
-
* Corresponding author.
E-mail address: panghuan@yzu.edu.cn (H. Pang).
Citation:
Jinming Xu, Jiao Ma, Yi Peng, Shuai Cao, Songtao Zhang, Huan Pang. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field[J]. Chinese Chemical Letters,
;2023, 34(4): 107527.
doi:
10.1016/j.cclet.2022.05.041
M. Brust, C.J. Kiely, Colloid. Surf. A 202 (2002) 175–186.
doi: 10.1016/S0927-7757(01)01087-1
S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Nanoscale 10 (2018) 12871–12934.
doi: 10.1039/C8NR02278J
K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chem. Rev. 112 (2012) 2739–2779.
doi: 10.1021/cr2001178
N. Li, X. Su, Y. Lu, Analyst 140 (2015) 2916–2943.
doi: 10.1039/C4AN02376E
S.R. Emory, W.E. Haskins, S. Nie, J. Am. Chem. Soc. 120 (1998) 8009–8010.
doi: 10.1021/ja9815677
F. Saleem, X. Cui, Z. Zhang, et al., Small 15 (2019) 1903253.
doi: 10.1002/smll.201903253
Y.U. Staechelin, D. Hoeing, F. Schulz, H. Lange, ACS Photonics 8 (2021) 752–757.
doi: 10.1021/acsphotonics.1c00078
C. Voisin, D. Christofilos, N. Del Fatti, et al., Phys. Rev. Lett. 85 (2000) 2200–2203.
doi: 10.1103/PhysRevLett.85.2200
R.M. Pallares, P. Choo, L.E. Cole, et al., Bioconjug. Chem. 30 (2019) 2032–2037.
doi: 10.1021/acs.bioconjchem.9b00316
X. Zhou, H. Pu, D.W. Sun, Crit. Rev. Food Sci. Nutr. 61 (2021) 2277–2296.
doi: 10.1080/10408398.2020.1809343
I. Chakraborty, W.J. Parak, Adv. Mater. Interfaces 6 (2019) 1970037.
doi: 10.1002/admi.201970037
I. Chakraborty, W.J. Parak, Adv. Mater. Interfaces 6 (2019) 1801407.
doi: 10.1002/admi.201801407
N. Gogurla, A.K. Sinha, D. Naskar, S.C. Kundu, S.K. Ray, Nanoscale 8 (2016) 7695–7703.
doi: 10.1039/C6NR01494A
R.M. Pallares, N.T.K. Thanh, X. Su, Nanoscale 11 (2019) 22152–22171.
doi: 10.1039/C9NR03040A
L. Wang, M. Hasanzadeh Kafshgari, M. Meunier, Adv. Funct. Mater. 30 (2020) 2005400.
doi: 10.1002/adfm.202005400
I. Fratoddi, R. Matassa, L. Fontana, et al., J. Phys. Chem. C 121 (2017) 18110–18119.
doi: 10.1021/acs.jpcc.7b07176
C. Zhu, G. Yang, H. Li, D. Du, Y. Lin, Anal. Chem. 87 (2015) 230–249.
doi: 10.1021/ac5039863
P.A. Rasheed, N. Sandhyarani, Microchim. Acta 184 (2017) 981–1000.
doi: 10.1007/s00604-017-2143-1
A. Abbas, H.M.A. Amin, Microchem. J. 175 (2022) 107166.
doi: 10.1016/j.microc.2021.107166
P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Acc. Chem. Res. 41 (2008) 1578–1586.
doi: 10.1021/ar7002804
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, et al., Chem. Soc. Rev. 37 (2008) 1792.
doi: 10.1039/b711486a
J.A. Creighton, D.G. Eadon, J. Chem. Soc. Faraday Trans. 87 (1991) 3881–3891.
doi: 10.1039/FT9918703881
P. Kanninen, C. Johans, J. Merta, K. Kontturi, J. Colloid. Interface Sci. 318 (2008) 88–95.
doi: 10.1016/j.jcis.2007.09.069
Q.L. Zhu, Q. Xu, Chem 1 (2016) 220–245.
doi: 10.1016/j.chempr.2016.07.005
Q. Zhang, I. Lee, J.B. Joo, F. Zaera, Y. Yin, Acc. Chem. Res. 46 (2013) 1816–1824.
doi: 10.1021/ar300230s
N. Wang, Q. Sun, J. Yu, Adv. Mater. 31 (2019) 1803966.
doi: 10.1002/adma.201803966
L. Chen, R. Luque, Y. Li, Chem. Soc. Rev. 46 (2017) 4614–4630.
doi: 10.1039/C6CS00537C
Q. Wang, D. Astruc, Chem. Rev. 120 (2020) 1438–1511.
doi: 10.1021/acs.chemrev.9b00223
C. Gao, F. Lyu, Y. Yin, Chem. Rev. 121 (2021) 834–881.
doi: 10.1021/acs.chemrev.0c00237
G. Férey, C. Mellot-Draznieks, C. Serre, et al., Science 309 (2005) 2040–2042.
doi: 10.1126/science.1116275
H. Deng, S. Grunder, K.E. Cordova, et al., Science 336 (2012) 1018–1023.
doi: 10.1126/science.1220131
R.S.K. Madsen, A. Qiao, J. Sen, et al., Science 367 (2020) 1473–1476.
doi: 10.1126/science.aaz0251
S. Wang, C.M. McGuirk, A. D'Aquino, J.A. Mason, C.A. Mirkin, Adv. Mater. 30 (2018) 1800202.
doi: 10.1002/adma.201800202
R. Zhao, Z. Liang, R. Zou, Q. Xu, Joule 2 (2018) 2235–2259.
doi: 10.1016/j.joule.2018.09.019
C. Hou, Q. Xu, Adv. Energy Mater. 9 (2019) 1801307.
doi: 10.1002/aenm.201801307
S. Abednatanzi, P.G. Derakhshandeh, H. Depauw, et al., Chem. Soc. Rev. 48 (2019) 2535–2565.
doi: 10.1039/C8CS00337H
K. Jayaramulu, F. Geyer, A. Schneemann, et al., Adv. Mater. 31 (2019) 1970230.
doi: 10.1002/adma.201970230
A.E. Thorarinsdottir, T.D. Harris, Chem. Rev. 120 (2020) 8716–8789.
doi: 10.1021/acs.chemrev.9b00666
K. Shen, L. Zhang, X. Chen, et al., Science 359 (2018) 206–210.
doi: 10.1126/science.aao3403
S. Dutta, J. Kim, P. Hsieh, et al., Small Methods 3 (2019) 1900213.
doi: 10.1002/smtd.201900213
S.L. Anderson, P.G. Boyd, A. Gładysiak, et al., Nat. Commun. 10 (2019) 1612.
doi: 10.1038/s41467-019-09486-2
H. Cai, Y.L. Huang, D. Li, Coord. Chem. Rev. 378 (2019) 207–221.
doi: 10.1016/j.ccr.2017.12.003
Y. Liu, Z. Liu, D. Huang, et al., Coord. Chem. Rev. 388 (2019) 63–78.
doi: 10.1016/j.ccr.2019.02.031
Q. Yang, Q. Xu, H. Jiang, Chem. Soc. Rev. 46 (2017) 4774–4808.
doi: 10.1039/C6CS00724D
S. Liu, C. Lai, X. Liu, et al., Coord. Chem. Rev. 424 (2020) 213520.
doi: 10.1016/j.ccr.2020.213520
Y. Xue, S. Zheng, H. Xue, H. Pang, J. Mater. Chem. A 7 (2019) 7301–7327.
doi: 10.1039/C8TA12178H
G. Li, S. Zhao, Y. Zhang, Z. Tang, Adv. Mater. 30 (2018) 1800702.
doi: 10.1002/adma.201800702
B. Li, J. Ma, P. Cheng, Small 15 (2019) 1804849.
doi: 10.1002/smll.201804849
W. Cui, T. Hu, Small 17 (2021) 2003971.
doi: 10.1002/smll.202003971
X. Kang, M. Zhu, Chem. Soc. Rev. 48 (2019) 2422–2457.
doi: 10.1039/C8CS00800K
H. Yu, B. Rao, W. Jiang, S. Yang, M. Zhu, Coord. Chem. Rev. 378 (2019) 595–617.
doi: 10.1016/j.ccr.2017.12.005
Q. Tang, G. Hu, V. Fung, D. Jiang, Acc. Chem. Res. 51 (2018) 2793–2802.
doi: 10.1021/acs.accounts.8b00380
L. Shang, J. Xu, G.U. Nienhaus, Nano Today 28 (2019) 100767.
doi: 10.1016/j.nantod.2019.100767
Z. Guo, C. Xiao, R.V. Maligal-Ganesh, et al., ACS Catal. 4 (2014) 1340–1348.
doi: 10.1021/cs400982n
Y. Yang, F. Wang, Q. Yang, et al., ACS Appl. Mater. Interfaces 6 (2014) 18163–18171.
doi: 10.1021/am505145d
J. Zhou, P. Wang, C. Wang, et al., ACS Nano 9 (2015) 6951–6960.
doi: 10.1021/acsnano.5b01138
Y. Huang, M. Zhao, S. Han, et al., Adv. Mater. 29 (2017) 1700102.
doi: 10.1002/adma.201700102
X. Wang, Y. Wang, Y. Ying, Trac Trend Anal. Chem. 143 (2021) 116395.
doi: 10.1016/j.trac.2021.116395
L. Dong, L. Yin, G. Tian, et al., Sens. Actuator. B: Chem. 308 (2020) 127687.
doi: 10.1016/j.snb.2020.127687
H. Zhao, X. Du, H. Dong, et al., Biosens. Bioelectron. 175 (2021) 112883.
doi: 10.1016/j.bios.2020.112883
E. Ma, P. Wang, Q. Yang, et al., ACS Biomater. Sci. Eng. 6 (2020) 1418–1427.
doi: 10.1021/acsbiomaterials.9b01882
Y. Zhang, Z. Zhang, S. Rong, et al., Microchim. Acta 187 (2020) 264.
doi: 10.1007/s00604-020-04235-5
K. Zhang, K. Dai, R. Bai, et al., Chin. Chem. Lett. 30 (2019) 664–667.
doi: 10.1016/j.cclet.2018.10.021
C. Zhang, J. He, Y. Zhang, et al., Biosens. Bioelectron. 102 (2018) 94–100.
doi: 10.1016/j.bios.2017.11.014
J. Jiang, Q. Cai, M. Deng, Front. Chem. 9 (2022) 812983.
doi: 10.3389/fchem.2021.812983
Y. Sun, X. Jiang, H. Jin, R. Gui, Anal. Chim. Acta 1083 (2019) 101–109.
doi: 10.1016/j.aca.2019.07.027
H. Lei, H. Zhu, S. Sun, et al., Electrochim. Acta 365 (2021) 137375.
doi: 10.1016/j.electacta.2020.137375
V.K. Bajpai, Y. Haldorai, I. Khan, et al., Microchim. Acta 188 (2021) 365.
doi: 10.1007/s00604-021-05022-6
H. Chen, T. Yang, F. Liu, W. Li, Sens. Actuator. B: Chem. 286 (2019) 401–407.
doi: 10.1016/j.snb.2018.10.036
A. Paul, G. Vyas, P. Paul, D.N. Srivastava, ACS Appl. Nano Mater. 1 (2018) 3600–3607.
doi: 10.1021/acsanm.8b00748
L. Wang, T. Meng, Y. Fan, et al., J. Colloid. Interface Sci. 524 (2018) 1–7.
doi: 10.1016/j.jcis.2018.04.009
X. Meng, H. Gu, H. Yi, et al., Anal. Chim. Acta 1125 (2020) 1–7.
doi: 10.1016/j.aca.2020.05.041
M. Deng, X. Bo, L. Guo, J. Electroanal. Chem. 815 (2018) 198–209.
doi: 10.1016/j.jelechem.2018.03.021
L. Ma, Y. He, Y. Wang, et al., Electrochim. Acta 318 (2019) 525–533.
doi: 10.1016/j.electacta.2019.06.110
J. Chen, C. Yu, Y. Zhao, et al., Biosens. Bioelectron. 91 (2017) 892–899.
doi: 10.1016/j.bios.2016.10.067
L. Xu, J. Li, J. Zhang, et al., Analyst 145 (2020) 3245–3256.
doi: 10.1039/D0AN00278J
P. Ling, J. Lei, L. Jia, H. Ju, Chem. Commun. 52 (2016) 1226–1229.
doi: 10.1039/C5CC08418K
L. Zhang, S. Li, J. Xin, et al., Microchim. Acta 186 (2019) 9.
doi: 10.1007/s00604-018-3128-4
X. Zhou, S. Guo, J. Gao, et al., Biosens. Bioelectron. 98 (2017) 83–90.
doi: 10.1016/j.bios.2017.06.039
A. Samadi-Maybodi, S. Ghasemi, H. Ghaffari-Rad, Sens. Actuator. B: Chem. 220 (2015) 627–633.
doi: 10.1016/j.snb.2015.05.127
S. Dong, D. Zhang, G. Suo, W. Wei, T. Huang, Anal. Chim. Acta 934 (2016) 203–211.
doi: 10.1016/j.aca.2016.05.040
Z. Peng, Z. Jiang, X. Huang, Y. Li, RSC Adv. 6 (2016) 13742–13748.
doi: 10.1039/C5RA25251B
P. Arul, S.A. John, Electrochim. Acta 235 (2017) 680–689.
doi: 10.1016/j.electacta.2017.03.097
Y. Zhao, J. Chen, H. Zhong, et al., Microchim. Acta 187 (2020) 649.
doi: 10.1007/s00604-020-04608-w
X. Li, J. Miao, Y. Li, et al., ACS Appl. Nano Mater. 2 (2019) 8043–8050.
doi: 10.1021/acsanm.9b02087
D. Kwon, J. Kim, J. Appl. Electrochem. 51 (2021) 1207–1216.
doi: 10.1007/s10800-021-01569-7
Y. Wang, P. Dong, J. Huang, et al., Anal. Chim. Acta 1184 (2021) 339036.
doi: 10.1016/j.aca.2021.339036
A.T. Ezhil Vilian, B. Dinesh, R. Muruganantham, et al., Microchim. Acta 184 (2017) 4793–4801.
doi: 10.1007/s00604-017-2513-8
L. Wang, T. Meng, L. Liang, et al., Sens. Actuator. B: Chem. 278 (2019) 133–139.
doi: 10.1016/j.snb.2018.09.034
T. Meng, N. Shang, A. Nsabimana, et al., Anal. Chim. Acta 1138 (2020) 59–68.
doi: 10.1016/j.aca.2020.09.022
Q. Zhu, S. Hu, L. Zhang, et al., Sens. Actuator. B: Chem. 313 (2020) 128031.
doi: 10.1016/j.snb.2020.128031
L. Shi, X. Zhu, T. Liu, H. Zhao, M. Lan, Sens. Actuator. B: Chem. 227 (2016) 583–590.
doi: 10.1016/j.snb.2015.12.092
Y. Shu, Y. Yan, J. Chen, et al., ACS Appl. Mater. Interfaces 9 (2017) 22342–22349.
doi: 10.1021/acsami.7b07501
X. Yang, J. Lv, Z. Yang, R. Yuan, Y. Chai, Anal. Chem. 89 (2017) 11636–11640.
doi: 10.1021/acs.analchem.7b03056
Y. Yu, C. Yu, Y. Niu, et al., Biosens. Bioelectron. 101 (2018) 297–303.
doi: 10.1016/j.bios.2017.10.006
Y. Wang, G. Zhao, G. Zhang, et al., Sens. Actuator. B: Chem. 319 (2020) 128313.
doi: 10.1016/j.snb.2020.128313
J. Yang, L. Yang, H. Ye, F. Zhao, B. Zeng, Electrochim. Acta 219 (2016) 647–654.
doi: 10.1016/j.electacta.2016.10.071
Y. Wang, Y. Wang, F. Wang, et al., J. Colloid. Interface Sci. 606 (2022) 510–517.
doi: 10.1016/j.jcis.2021.08.055
S.A. Hira, M. Nallal, K.H. Park, Sens. Actuator. B: Chem. 298 (2019) 126861.
doi: 10.1016/j.snb.2019.126861
J. Zhang, X. Xu, Y. Qiang, Sens. Actuator. B: Chem. 312 (2020) 127964.
doi: 10.1016/j.snb.2020.127964
J. Ma, J. Zheng, Microchim. Acta 187 (2020) 389.
doi: 10.1007/s00604-020-04355-y
S. Li, S. Yue, C. Yu, et al., Analyst 144 (2019) 649–655.
doi: 10.1039/C8AN01590B
H. Wang, W. Chen, Q. Chen, et al., J. Electroanal. Chem. 897 (2021) 115603.
doi: 10.1016/j.jelechem.2021.115603
Z. Chen, Y. Qian, L. Zhang, Y. Tian, J. Electroanal. Chem. 905 (2022) 115985.
doi: 10.1016/j.jelechem.2021.115985
W. Meng, Y. Wen, L. Dai, Z. He, L. Wang, Sens. Actuator. B: Chem. 260 (2018) 852–860.
doi: 10.1016/j.snb.2018.01.109
L. Dai, Y. Li, Y. Wang, et al., Biosens. Bioelectron. 132 (2019) 97–104.
doi: 10.1016/j.bios.2019.02.055
Y. Dong, C. Duan, Q. Sheng, J. Zheng, Analyst 144 (2019) 521–529.
doi: 10.1039/C8AN01641K
D. Sun, D. Yang, P. Wei, et al., ACS Appl. Mater. Interfaces 12 (2020) 41960–41968.
doi: 10.1021/acsami.0c11269
Y. Yang, Z. Yang, J. Lv, R. Yuan, Y. Chai, Talanta 169 (2017) 44–49.
doi: 10.1016/j.talanta.2017.03.037
D. Duan, H. Yang, Y. Ding, et al., Electrochim. Acta 261 (2018) 160–166.
doi: 10.1016/j.electacta.2017.12.146
M. Wang, L. Yang, B. Hu, et al., Appl. Surf. Sci. 445 (2018) 123–132.
doi: 10.1016/j.apsusc.2018.03.144
J. Liu, Y. Shang, Q. Zhu, X. Zhang, J. Zheng, Microchim. Acta 186 (2019) 509.
doi: 10.1007/s00604-019-3638-8
S. Chen, P. Zhao, L. Jiang, et al., Anal. Bioanal. Chem. 413 (2021) 613–624.
doi: 10.1007/s00216-020-03032-6
X. Zhang, M. Zhu, Y. Jiang, et al., J. Hazard. Mater. 400 (2020) 123222.
doi: 10.1016/j.jhazmat.2020.123222
H. Dong, X. Hu, J. Zhao, et al., Sens. Actuator. B: Chem. 276 (2018) 150–157.
doi: 10.1016/j.snb.2018.08.106
T. Yan, L. Zhu, H. Ju, J. Lei, Anal. Chem. 90 (2018) 14493–14499.
doi: 10.1021/acs.analchem.8b04338
Y.C. Wang, Y.C. Chen, W.S. Chuang, ACS Appl. Nano Mater. 3 (2020) 9440–9448.
doi: 10.1021/acsanm.0c02052
Y. Wang, L. Wang, H. Chen, X. Hu, S. Ma, ACS Appl. Mater. Interfaces 8 (2016) 18173–18181.
doi: 10.1021/acsami.6b04819
Q. Wang, X. Zhang, X. Chai, et al., ACS Appl. Nano Mater. 4 (2021) 6103–6110.
L. Chen, T. Wang, Y. Xue, et al., Adv. Mater. Interfaces 5 (2018) 1801168.
doi: 10.1002/admi.201801168
J. Yang, H. Ye, F. Zhao, B. Zeng, ACS Appl. Mater. Interfaces 8 (2016) 20407–20414.
doi: 10.1021/acsami.6b06436
C. Li, R. Wu, J. Zou, et al., Biosens. Bioelectron. 116 (2018) 81–88.
doi: 10.1016/j.bios.2018.05.045
Y. Lu, W. Chen, Chem. Soc. Rev. 41 (2012) 3594.
doi: 10.1039/c2cs15325d
J. Sun, Y. Jin, J. Mater. Chem. C 2 (2014) 8000–8011.
doi: 10.1039/C4TC01489H
Y. Tao, M. Li, J. Ren, X. Qu, Chem. Soc. Rev. 44 (2015) 8636–8663.
doi: 10.1039/C5CS00607D
R. Jin, Nanoscale 2 (2010) 343–362.
doi: 10.1039/B9NR00160C
Q. Tan, R. Zhang, G. Zhang, et al., Anal. Bioanal. Chem. 412 (2020) 1317–1324.
doi: 10.1007/s00216-019-02353-5
X. Cao, S. Cheng, Y. You, S. Zhang, Y. Xian, Anal. Chim. Acta 1092 (2019) 108–116.
doi: 10.1016/j.aca.2019.09.051
M. Xia, Y. Sui, Y. Guo, Y. Zhang, Analyst 146 (2021) 904–910.
doi: 10.1039/D0AN02076A
R. Jalili, M. Dastborhan, S. Chenaghlou, A. Khataee, J. Photochem. Photobiol. A Chem. 391 (2020) 112370.
doi: 10.1016/j.jphotochem.2020.112370
B. Han, X. Hu, M. Yu, et al., RSC Adv. 8 (2018) 22748–22754.
doi: 10.1039/C8RA03632B
X.J. Wu, F. Kong, C.Q. Zhao, S.N. Ding, Analyst 144 (2019) 2523–2530.
doi: 10.1039/C8AN02414F
C. Fan, X. Lv, F. Liu, et al., ACS Sens. 3 (2018) 441–450.
doi: 10.1021/acssensors.7b00874
N. Bagheri, A. Khataee, B. Habibi, J. Hassanzadeh, Talanta 179 (2018) 710–718.
doi: 10.1016/j.talanta.2017.12.009
L. Liu, Y. Hao, Z. Li, et al., Chem. Pap. 74 (2020) 1839–1847.
doi: 10.1007/s11696-019-01032-0
L. Zhang, C. Fan, M. Liu, et al., Sens. Actuator. B: Chem. 266 (2018) 543–552.
doi: 10.1016/j.snb.2018.03.153
X. Wang, H. Wang, L. Guo, et al., Analyst 145 (2020) 1362–1367.
doi: 10.1039/C9AN02615K
N. Bagheri, A. Khataee, J. Hassanzadeh, B. Habibi, J. Hazard. Mater. 360 (2018) 233–242.
doi: 10.1016/j.jhazmat.2018.08.013
H. Wang, J. Zhao, C. Liu, Y. Tong, W. He, ACS Omega 6 (2021) 4807–4815.
doi: 10.1021/acsomega.0c05747
H. Li, H. Liu, J. Zhang, et al., ACS Appl. Mater. Interfaces 9 (2017) 40716–40725.
doi: 10.1021/acsami.7b13695
T. Cheng, X. Li, P. Huang, et al., Microchim. Acta 186 (2019) 94.
doi: 10.1007/s00604-018-3209-4
Q. Luan, X. Xiong, N. Gan, et al., Talanta 187 (2018) 27–34.
doi: 10.1016/j.talanta.2018.04.072
J. Li, J. Zhao, S. Li, et al., Nano Res. 14 (2021) 4689–4695.
doi: 10.1007/s12274-021-3406-z
Y. Wu, Y. Ma, G. Xu, et al., Sens. Actuator. B: Chem. 249 (2017) 195–202.
doi: 10.1016/j.snb.2017.03.145
Z. Hu, Y. Yin, Q. Liu, X. Zheng, Analyst 144 (2019) 2716–2724.
doi: 10.1039/C9AN00307J
J. Li, K. Xu, Y. Chen, Chemosensors 9 (2021) 140.
doi: 10.3390/chemosensors9060140
Y. Zhang, J. Song, Q. Pan, et al., J. Mater. Chem. B 8 (2020) 114–124.
doi: 10.1039/C9TB02183C
Y. Liu, L. Zhang, Q. Li, et al., Anal. Chim. Acta 1146 (2021) 24–32.
doi: 10.1016/j.aca.2020.12.034
H. Yang, Z. Sun, X. Qin, et al., Food Chem. 376 (2022) 131906.
doi: 10.1016/j.foodchem.2021.131906
H. Chen, Q. Qiu, S. Sharif, et al., ACS Appl. Mater. Interfaces 10 (2018) 24108–24115.
doi: 10.1021/acsami.8b04737
J. Chi, M. Guo, C. Zhang, et al., New J. Chem. 44 (2020) 13344–13349.
doi: 10.1039/C9NJ06339K
J. Feng, H. Lu, Y. Yang, et al., Microchim. Acta 188 (2021) 280.
doi: 10.1007/s00604-021-04928-5
G. Cai, K. Ge, X. Ouyang, Y. Hu, G. Li, J. Sep. Sci. 43 (2020) 2834–2841.
doi: 10.1002/jssc.202000145
S. Park, C. Bae, J. Lee, et al., ACS Appl. Nano Mater. 4 (2021) 14004–14013.
doi: 10.1021/acsanm.1c03332
H. Kim, B.T. Trinh, K.H. Kim, et al., Biosens. Bioelectron. 179 (2021) 113063.
doi: 10.1016/j.bios.2021.113063
Q. Wang, Z. Shi, Z. Wang, et al., Anal. Chim. Acta 1129 (2020) 126–135.
doi: 10.1016/j.aca.2020.07.015
L. Wu, H. Pu, L. Huang, D.W. Sun, Food Chem. 328 (2020) 127105.
doi: 10.1016/j.foodchem.2020.127105
J. Fu, H. Lai, Z. Zhang, G. Li, Anal. Chim. Acta 1161 (2021) 338464.
doi: 10.1016/j.aca.2021.338464
Y. Hu, J. Liao, D. Wang, G. Li, Anal. Chem. 86 (2014) 3955–3963.
doi: 10.1021/ac5002355
H. Pu, H. Zhu, F. Xu, D. Sun, J. Raman Spectrosc. 53 (2022) 682–693.
doi: 10.1002/jrs.6293
X. Yang, Y. Liu, S.H. Lam, et al., Nano Lett. 21 (2021) 8205–8212.
doi: 10.1021/acs.nanolett.1c02649
Y. Hu, H. Cheng, X. Zhao, et al., ACS Nano 11 (2017) 5558–5566.
doi: 10.1021/acsnano.7b00905
S. Hu, Y. Jiang, Y. Wu, et al., ACS Appl. Mater. Interfaces 12 (2020) 55324–55330.
doi: 10.1021/acsami.0c12988
F. Xu, W. Shang, M. Xuan, G. Ma, Z. Ben, Chemosphere 288 (2022) 132635.
doi: 10.1016/j.chemosphere.2021.132635
D. Sun, G. Qi, K. Ma, et al., iScience 23 (2020) 101274.
doi: 10.1016/j.isci.2020.101274
H. Xu, J. Zhu, Y. Cheng, D. Cai, Sens. Actuator. B: Chem. 349 (2021) 130793.
doi: 10.1016/j.snb.2021.130793
Z. Jiang, P. Gao, L. Yang, C. Huang, Y. Li, Anal. Chem. 87 (2015) 12177–12182.
doi: 10.1021/acs.analchem.5b03058
X. Kuang, S. Ye, X. Li, et al., Chem. Commun. 52 (2016) 5432–5435.
doi: 10.1039/C6CC00320F
D. Li, X. Cao, Q. Zhang, et al., J. Mater. Chem. A 7 (2019) 14108–14117.
doi: 10.1039/C9TA03690C
Q. Wang, Z. Xu, Y. Zhao, et al., Sens. Actuator. B: Chem. 329 (2021) 129080.
doi: 10.1016/j.snb.2020.129080
X. Ren, M. Jin, X. Feng, X. Li, Y. Zhou, Appl. Surf. Sci. 537 (2021) 147853.
doi: 10.1016/j.apsusc.2020.147853
Y. Zhai, T. Xuan, Y. Wu, et al., Sens. Actuator. B: Chem. 326 (2021) 128852.
doi: 10.1016/j.snb.2020.128852
S.D. Marchi, L. Vázquez-Iglesias, G. Bodelón, et al., Chem. Mater. 32 (2020) 5739–5749.
doi: 10.1021/acs.chemmater.0c01518
X. Zhou, G. Liu, H. Zhang, Y. Li, W. Cai, J. Hazard. Mater. 368 (2019) 429–435.
doi: 10.1016/j.jhazmat.2019.01.070
K. Yang, S. Zong, Y. Zhang, et al., ACS Appl. Mater. Interfaces 12 (2020) 1395–1403.
doi: 10.1021/acsami.9b19358
Y. Su, Y. Xie, X. Hou, Y. Lv, Appl. Spectrosc. Rev. 49 (2014) 201–232.
doi: 10.1080/05704928.2013.819514
S. Han, Z. Zhang, S. Li, L. Qi, G. Xu, Sci. China Chem. 59 (2016) 794–801.
doi: 10.1007/s11426-016-0043-3
M. Amirzehni, H. Eskandari, B. Vahid, J. Hassanzadeh, Sens. Actuator. B: Chem. 348 (2021) 130690.
doi: 10.1016/j.snb.2021.130690
X. Tang, Y. Zhang, Z. Jiang, et al., Talanta 179 (2018) 43–50.
doi: 10.1016/j.talanta.2017.10.049
A. Yousefzadeh, J. Hassanzadeh, S.M.J. Mousavi, M. Yousefzadeh, Sens. Actuator. B: Chem. 286 (2019) 154–162.
doi: 10.1016/j.snb.2019.01.155
Y. Lin, X. Wang, Y. Sun, et al., Sens. Actuator. B: Chem. 289 (2019) 56–64.
doi: 10.1016/j.snb.2019.03.075
Y. Li, J. Yuan, S. Zhan, et al., Sens. Actuator. B: Chem. 341 (2021) 130030.
doi: 10.1016/j.snb.2021.130030
Z. Yan, F. Wang, P. Deng, et al., Biosens. Bioelectron. 109 (2018) 132–138.
doi: 10.1016/j.bios.2018.03.004
F. Wang, J. Lin, T. Zhao, et al., J. Am. Chem. Soc. 138 (2016) 7718–7724.
doi: 10.1021/jacs.6b03662
H. Peng, Z. Huang, H. Deng, et al., Angew. Chem. Int. Ed. 59 (2020) 9982–9985.
doi: 10.1002/anie.201913445
Y. Nie, X. Tao, H. Zhang, Y. Chai, R. Yuan, Anal. Chem. 93 (2021) 3445–3451.
doi: 10.1021/acs.analchem.0c04682
C. Wang, N. Zhang, Y. Li, et al., Sens. Actuator. B: Chem. 291 (2019) 319–328.
doi: 10.1016/j.snb.2019.04.097
L. Zhou, L. Yang, C. Wang, et al., Talanta 238 (2022) 123047.
doi: 10.1016/j.talanta.2021.123047
G. Mo, X. He, D. Qin, et al., Biosens. Bioelectron. 178 (2021) 113024.
doi: 10.1016/j.bios.2021.113024
G. Zhao, Y. Wang, X. Li, et al., Anal. Chem. 91 (2019) 1989–1996.
doi: 10.1021/acs.analchem.8b04332
M. Xia, F. Zhou, X. Feng, et al., Anal. Chem. 93 (2021) 11284–11290.
doi: 10.1021/acs.analchem.1c02417
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Xi Feng , Ding-Yi Hu , Zi-Jun Liang , Mu-Yang Zhou , Zhi-Shuo Wang , Wen-Yu Su , Rui-Biao Lin , Dong-Dong Zhou , Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Xin Li , Xuan Ding , Junkun Zhou , Hui Shi , Zhenxi Dai , Jiayi Liu , Yongcun Ma , Penghui Shao , Liming Yang , Xubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Junqing Wu , Yiyang Zhang , Qingqing Hong , Hui Yang , Lifeng Zhang , Ming Zhang , Lei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301