Citation: Xinxing Sun, Shuangke Liu, Weiwei Sun, Chunman Zheng. Emerging multifunctional iron-based nanomaterials as polysulfides adsorbent and sulfur species catalyst for lithium-sulfur batteries—A mini-review[J]. Chinese Chemical Letters, ;2023, 34(1): 107501. doi: 10.1016/j.cclet.2022.05.015 shu

Emerging multifunctional iron-based nanomaterials as polysulfides adsorbent and sulfur species catalyst for lithium-sulfur batteries—A mini-review

Figures(9)

  • Lithium-sulfur (Li-S) battery has been considered as one of the most promising next generation energy storage technologies for its overwhelming merits of high theoretical specific capacity (1673 mAh/g), high energy density (2500 Wh/kg), low cost, and environmentally friendliness of sulfur. However, critical drawbacks, including inherent low conductivity of sulfur and Li2S, large volume changes of sulfur cathodes, undesirable shuttling and sluggish redox kinetics of polysulfides, seriously deteriorate the energy density, cycle life and rate capability of Li-S battery, and thus limit its practical applications. Herein, we reviewed the recent developments addressing these problems through iron-based nanomaterials for effective synergistic immobilization as well as conversion reaction kinetics acceleration for polysulfides. The mechanist configurations between different iron-based nanomaterials and polysulfides for entrapment and conversion acceleration were summarized at first. Then we concluded the recent progresses on utilizing various iron-based nanomaterials in Li-S battery as sulfur hosts, separators and cathode interlayers. Finally, we discussed the challenges and perspectives for designing high sulfur loading cathode architectures along with outstanding chemisorption capability and catalytic activity.
  • 加载中
    1. [1]

      M. Li, J. Lu, Z.W. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561.  doi: 10.1002/adma.201800561

    2. [2]

      R.P. Fang, S.Y. Zhao, Z.H. Sun, et al., Adv. Mater. 29 (2017) 1606823.  doi: 10.1002/adma.201606823

    3. [3]

      J. Balach, J. Linnemann, T. Jaumann, L. Giebeler, J. Mater. Chem. A 6 (2018) 23127-23168.  doi: 10.1039/c8ta07220e

    4. [4]

      S. Huang, E. Huixiang, Y. Yang, et al., J. Mater. Chem. A 9 (2021) 7458-7480.  doi: 10.1039/d0ta11919a

    5. [5]

      Y. Su, Y. Fu, T. Cochell, A. Manthiram, Nat. Commun. 4 (2013) 2985.

    6. [6]

      D.R. Wang, D.B. Shah, J.A. Maslyn, et al., J. Electrochem. Soc. 165 (2018) A3487-A3495.  doi: 10.1149/2.0981814jes

    7. [7]

      M.R. Busche, P. Adelhelm, H. Sommer, et al., J. Power Sources 259 (2014) 289-299.

    8. [8]

      Z. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 45 (2016) 5605-5634.

    9. [9]

      J. Xu, T. Lawson, H.B. Fan, et al., Adv. Energy Mater. 8 (2018) 1702607.  doi: 10.1002/aenm.201702607

    10. [10]

      J.J. Song, C.Y. Zhang, X. Guo, et al., J. Mater. Chem. A 6 (2018) 16610-16616.

    11. [11]

      J.Y. Wu, X.W. Li, H.X. Zeng, et al., J. Mater. Chem. A 7 (2019) 7897-7906.  doi: 10.1039/c9ta00458k

    12. [12]

      Y.G. Cao, Q.A. Wu, Y.C. Chen, et al., J. Electrochem. Soc. 168 (2021) 070510.  doi: 10.1149/1945-7111/ac0e4d

    13. [13]

      Y.Z. Song, H. Gao, M.L. Wang, et al., Ecomat (2022) e12182.

    14. [14]

      X.D. Hong, R. Wang, Y. Liu, et al., J. Energy Chem. 42 (2020) 144-168.

    15. [15]

      D. Liu, C. Zhang, G. Zhou, et al., Adv. Sci. 5 (2018) 1700270.  doi: 10.1002/advs.201700270

    16. [16]

      G. Babu, K. Ababtain, K.Y.S. Ng, L.M.R. Arava, Sci. Rep. 5 (2015) 8763.

    17. [17]

      H. Al Salem, G. Babu, C.V. Rao, L.M.R. Arava, J. Am. Chem. Soc. 137 (2015) 11542-11545.  doi: 10.1021/jacs.5b04472

    18. [18]

      Y. Yu, M. Yan, W.D. Dong, et al., Chem. Eng. J. 417 (2021) 129241.

    19. [19]

      P.Y. Wang, R. Zeng, L. You, A.C.S. Appl, et al., Nano Mater. 3 (2020) 1382-1390.  doi: 10.1021/acsanm.9b02250

    20. [20]

      B. Guan, X. Sun, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 2249-2253.

    21. [21]

      J.H. Cheng, D. Zhao, L.S. Fan, et al., J. Mater. Chem. A 5 (2017) 14519-14524.  doi: 10.1039/C7TA03236F

    22. [22]

      S.L. Yu, W.L. Cai, L. Chen, et al., J. Energy Chem. 55 (2021) 533-548.

    23. [23]

      A. Maurin, M. Robert, J. Am. Chem. Soc. 138 (2016) 2492-2495.  doi: 10.1021/jacs.5b12652

    24. [24]

      Y.J. Sa, D.J. Seo, J. Woo, et al., J. Am. Chem. Soc. 138 (2016) 15046-15056.  doi: 10.1021/jacs.6b09470

    25. [25]

      H.X. Zhang, S.F. Li, B. Zhao, et al., Chin. J. Inorg. Chem. 36 (2020) 1205-1222.

    26. [26]

      M. Chen, E. Wang, Q. Liu, et al., Energy Storage Mater. 19 (2019) 163-178.  doi: 10.20411/pai.v4i1.304

    27. [27]

      C. Hao, T. Gao, A. Yuan, J. Xu, Chin. Chem. Lett. 32 (2021) 113-118.

    28. [28]

      Y.F. Zheng, W.J. Feng, Int. J. Electrochem. Sci. 16 (2021) 210370.  doi: 10.20964/2021.03.51

    29. [29]

      S.F. Jiang, S. Huang, M.J. Yao, et al., Chin. Chem. Lett. 31 (2020) 2347-2352.

    30. [30]

      Q. Wang, H.Q. Zhao, B.Y. Li, et al., Chin. Chem. Lett. 32 (2021) 1157-1160.

    31. [31]

      H. Bandal, K.K. Reddy, A. Chaugule, H. Kim, J. Power Sources 395 (2018) 106-127.

    32. [32]

      C. Zheng, S.Z. Niu, W. Lv, et al., Nano Energy 33 (2017) 306-312.

    33. [33]

      Y.R. Zhong, K.R. Yang, W. Liu, et al., J. Phys. Chem. C 121 (2017) 14222-14227.  doi: 10.1021/acs.jpcc.7b04170

    34. [34]

      L.S. Fan, H.X. Wu, X. Wu, et al., Electrochim. Acta 295 (2019) 444-451.

    35. [35]

      J. Li, Y.L. Xu, Y. Zhang, et al., J. Mater. Chem. A 8 (2020) 19544-19554.  doi: 10.1039/d0ta06701f

    36. [36]

      X. Chen, H. Peng, R. Zhang, et al., ACS Energy Lett. 2 (2017) 795-801.  doi: 10.1021/acsenergylett.7b00164

    37. [37]

      Y. Boyjoo, H. Shi, E. Olsson, et al., Adv. Energy Mater. 10 (2020) 2000651.  doi: 10.1002/aenm.202000651

    38. [38]

      C. Ma, Y.Q. Zhang, Y.M. Feng, et al., Adv. Mater. 33 (2021) 2100171.  doi: 10.1002/adma.202100171

    39. [39]

      H. Li, D. Liu, X.X. Zhu, et al., Nano Energy 73 (2020) 104763.

    40. [40]

      L. Zhang, P. Liang, X.L. Man, et al., J. Phys. Chem. Solids 126 (2019) 280-286.

    41. [41]

      Q.W. Zeng, R.M. Hu, Z.B. Chen, J.X. Shang, Mater. Res. Express 6 (2019) 095620.  doi: 10.1088/2053-1591/ab33ad

    42. [42]

      J. Zhou, X. Liu, L. Zhu, et al., Joule 2 (2018) 2681-2693.

    43. [43]

      J. Shen, X. Xu, J. Liu, et al., ACS Nano 13 (2019) 8986-8996.  doi: 10.1021/acsnano.9b02903

    44. [44]

      S.Z. Huang, Y.V. Lim, X.M. Zhang, et al., Nano Energy 51 (2018) 340-348.

    45. [45]

      C.Y. Zhou, X.C. Li, H.L. Jiang, et al., Adv. Funct. Mater. 31 (2021) 2011249.  doi: 10.1002/adfm.202011249

    46. [46]

      Q. Liu, Y. Wang, Z. Hu, Z. Zhang, RSC Adv. 11 (2021) 3079-3095.  doi: 10.1039/d0ra08223f

    47. [47]

      W. Zang, Z. Kou, S.J. Pennycook, J. Wang, Adv. Energy Mater. 10 (2020) 1903181.  doi: 10.1002/aenm.201903181

    48. [48]

      H. Zhang, W. Zhou, X. Lu, et al., Adv. Energy Mater. 10 (2020) 2000882.  doi: 10.1002/aenm.202000882

    49. [49]

      C. Lu, R. Fang, X. Chen, Adv. Mater. 32 (2020) 1906548.  doi: 10.1002/adma.201906548

    50. [50]

      H. Zhang, X.F. Lu, Z.P. Wu, X.W.D. Lou, ACS Central Sci. 6 (2020) 1288-1301.  doi: 10.1021/acscentsci.0c00512

    51. [51]

      Y. Miao, Y. Zheng, F. Tao, et al., Chin. Chem. Lett. 2 (2022) 1450-1463.

    52. [52]

      L. Lin, H. Li, C. Yan, et al., Adv. Mater. 31 (2019) 1903470.  doi: 10.1002/adma.201903470

    53. [53]

      X. Xu, Z. Xia, X. Zhang, et al., Appl. Catal. B: Environ. 259 (2019) 118042.

    54. [54]

      Y. Chen, S. Ji, S. Zhao, et al., Nat. Commun. 9 (2018) 5422.

    55. [55]

      S.Y. Zhou, S. Yang, X.W. Ding, et al., ACS Nano 14 (2020) 7538-7551.  doi: 10.1021/acsnano.0c03403

    56. [56]

      D.R. Deng, R.M. Yuan, P.K. Yu, et al., Adv. Energy Mater. 11 (2021) 2101156.  doi: 10.1002/aenm.202101156

    57. [57]

      H.J. Peng, Z.W. Zhang, J.Q. Huang, et al., Adv. Mater. 28 (2016) 9551-9558.  doi: 10.1002/adma.201603401

    58. [58]

      Z.Z. Liu, L. Zhou, Q. Ge, et al., ACS Appl. Mater. Interfaces 10 (2018) 19311-19317.  doi: 10.1021/acsami.8b03830

    59. [59]

      M. Jiang, R.X. Wang, K.L. Wang, et al., Nanoscale 11 (2019) 15156-15165.  doi: 10.1039/c9nr04408f

    60. [60]

      Y.Z. Wang, D. Adekoya, J.Q. Sun, et al., Adv. Funct. Mater. 29 (2019) 1807485.  doi: 10.1002/adfm.201807485

    61. [61]

      C. Lu, Y. Chen, Y. Yang, X. Chen, Nano Lett. 20 (2020) 5522-5530.  doi: 10.1021/acs.nanolett.0c02167

    62. [62]

      Y. Qiu, L.S. Fan, M.X. Wang, et al., ACS Nano 14 (2020) 16105-16113.  doi: 10.1021/acsnano.0c08056

    63. [63]

      Q.J. Shao, L. Xu, D.C. Guo, et al., J. Mater. Chem. A 8 (2020) 23772-23783.  doi: 10.1039/d0ta07010f

    64. [64]

      K. Zhang, Z.X. Chen, R.Q. Ning, et al., ACS Appl. Mater. Interfaces 11 (2019) 25147-25154.  doi: 10.1021/acsami.9b05628

    65. [65]

      G.Q. Cao, Z.K. Wang, D. Bi, et al., Chem. Eur. J. 26 (2020) 10314-10320.  doi: 10.1002/chem.202001282

    66. [66]

      H.L. Ye, J.G. Sun, S.L. Zhang, et al., ACS Nano 13 (2019) 14208-14216.  doi: 10.1021/acsnano.9b07121

    67. [67]

      T.Q. Zhang, Z. Chen, J.X. Zhao, Y.H. Ding, Diamond Relat. Mater. 90 (2018) 72-78.

    68. [68]

      J. Li, Z. Niu, C. Guo, et al., J. Energy Chem. 54 (2021) 434-451.

    69. [69]

      T. Zhou, W. Lv, J. Li, et al., Energy Environ. Sci. 10 (2017) 1694-1703.  doi: 10.1039/C7EE01430A

    70. [70]

      L. Zhang, P. Liang, H.B. Shu, et al., J. Colloid Interface Sci. 529 (2018) 426-431.

    71. [71]

      H. Lin, R.C. Jin, A.L. Wang, et al., Ceram. Int. 45 (2019) 17996-18002.

    72. [72]

      Y. Yang, W. Yuan, X. Zhang, et al., Renew. Sust. Energ. Rev. 127 (2020) 109884.

    73. [73]

      S. Tanaka, Y.V. Kaneti, N.L.W. Septiani, et al., Small Methods 3 (2019) 1800512.  doi: 10.1002/smtd.201800512

    74. [74]

      J. Ma, X. Guo, Y. Yan, et al., Adv. Sci. 5 (2018) 1700986.  doi: 10.1002/advs.201700986

    75. [75]

      M. Ding, S.Z. Huang, Y. Wang, et al., J. Mater. Chem. A 7 (2019) 25078-25087.  doi: 10.1039/c9ta06489c

    76. [76]

      Y. Jin, C.C. Zhao, Y.C. Lin, et al., J. Mater. Sci. Technol. 33 (2017) 768-774.

    77. [77]

      K. Lu, H. Zhang, S.Y. Gao, et al., Adv. Funct. Mater. 29 (2019) 1807309.  doi: 10.1002/adfm.201807309

    78. [78]

      Y. Zhang, R. Gu, S. Zheng, et al., J. Mater. Chem. A 7 (2019) 21747-21758.  doi: 10.1039/c9ta07767g

    79. [79]

      X.R. He, Y.J. Zhang, L.F. Yang, et al., Acta Metall. Sin. Engl. Lett. 34 (2021) 410-416.  doi: 10.1007/s40195-020-01104-1

    80. [80]

      X. Wang, K. Zhu, Y. Ju, et al., J. Magn. Magn. Mater. 489 (2019) 165432.

    81. [81]

      H.Y. Pan, Z. Tan, H.H. Zhou, et al., J. Energy Chem. 39 (2019) 101-108.

    82. [82]

      Y.G. Zhang, G.R. Li, J.Y. Wang, et al., Adv. Funct. Mater. 30 (2020) 9.

    83. [83]

      W. Weng, J.X. Xiao, Y.J. Shen, et al., Angew. Chem. Int. Ed. 60 (2021) 24905-24909.  doi: 10.1002/anie.202111707

    84. [84]

      K. Xie, Y. You, K. Yuan, et al., Adv. Mater. 29 (2017) 1604724.  doi: 10.1002/adma.201604724

    85. [85]

      Z. Gao, Y. Schwab, Y.Y. Zhang, et al., Adv. Funct. Mater. 28 (2018) 1800563.  doi: 10.1002/adfm.201800563

    86. [86]

      H. Wei, E.F. Rodriguez, A.S. Best, et al., ACS Appl. Mater. Interfaces 11 (2019) 13194-13204.  doi: 10.1021/acsami.8b21627

    87. [87]

      Y.Z. Wang, M. Li, L.C. Xu, et al., Chem. Eng. J. 358 (2019) 962-968.

    88. [88]

      Z.S. Jin, M. Zhao, T.N. Lin, et al., Chem. Eng. J. 388 (2020) 124315.

    89. [89]

      Y. Liu, X.C. Li, Y. Liu, et al., Chem. Eng. J. 382 (2020) 122858.

    90. [90]

      Q. Dong, F.L. Zhang, S. Ji, et al., J. Alloys Compd. 877 (2021) 160286.

    91. [91]

      S.Y. Gao, F. Xia, B.M. Li, et al., ACS Appl. Mater. Interfaces 13 (2021) 17791-17799.  doi: 10.1021/acsami.1c01393

    92. [92]

      C.L. Song, Z.H. Li, M.Z. Li, et al., ACS Appl. Nano Mater. 3 (2020) 9686-9693.  doi: 10.1021/acsanm.0c01689

    93. [93]

      S.X. Wang, X.Y. Liu, H.H. Duan, et al., Chem. Eng. J. 415 (2021) 129001.

    94. [94]

      Y.J. Zhang, J. Qu, Q.Y. Ji, et al., Carbon 155 (2019) 353-360.  doi: 10.14336/ad.2018.0617

    95. [95]

      M.S. Garapati, R. Sundara, Electrochim. Acta 362 (2020) 137035.

    96. [96]

      M. Zhang, Y. Guo, Y.H. Wei, et al., J. Mater. Chem. A 8 (2020) 18987-19000.  doi: 10.1039/d0ta06862d

    97. [97]

      X. Wang, H.M. Kim, Y. Xiao, Y.K. Sun, J. Mater. Chem. A 4 (2016) 14915-14931.

    98. [98]

      Y. Shi, B. Zhang, Chem. Soc. Rev. 45 (2016) 1781-1781.  doi: 10.1039/C6CS90013E

    99. [99]

      D. Yang, D. Bhattacharjya, S. Inamdar, et al., J. Am. Chem. Soc. 134 (2012) 16127-16130.  doi: 10.1021/ja306376s

    100. [100]

      Y.G. Zhang, Y.G. Wang, R.J. Luo, et al., Nanoscale Horiz. 5 (2020) 530-540.

    101. [101]

      Z.X. Zhao, R. Pathak, X.M. Wang, et al., Electrochim. Acta 364 (2020) 137117.

    102. [102]

      M. Ma, L.Y. Cao, K. Yao, et al., ACS Sustain. Chem. Eng. 9 (2021) 5315-5321.  doi: 10.1021/acssuschemeng.0c09030

    103. [103]

      H.D. Yuan, X.L. Chen, G.M. Zhou, et al., ACS Energy Lett. 2 (2017) 1711-1719.  doi: 10.1021/acsenergylett.7b00465

    104. [104]

      Z.S. Qiao, Y.G. Zhang, Z.H. Meng, et al., Adv. Funct. Mater. 31 (2021) 2100970.  doi: 10.1002/adfm.202100970

    105. [105]

      Y.J. Chen, S.Y. Liu, X.T. Yuan, et al., Carbon 167 (2020) 446-454.

    106. [106]

      Y.J. Li, X.Q. Lei, Y.F. Yuan, et al., ACS Central Sci. 6 (2020) 1827-1834.  doi: 10.1021/acscentsci.0c00899

    107. [107]

      S. Qi, B. Xu, V.T. Tiong, et al., Chem. Eng. J. 379 (2020) 122261.

    108. [108]

      Q.T. Xu, J.C. Li, H.G. Xue, S.P. Guo, J. Power Sources 379 (2018) 41-52.

    109. [109]

      S.S. Zhang, D.T. Tran, J. Mater. Chem. A 4 (2016) 4371-4374.

    110. [110]

      X.Y. Li, S. Feng, M. Zhao, et al., Angew. Chem. Int. Ed. 61 (2022) e202114671.

    111. [111]

      Z.P. Zeng, W. Li, X.J. Chen, et al., ACS Sustain. Chem. Eng. 8 (2020) 3261-3272.  doi: 10.1021/acssuschemeng.9b06874

    112. [112]

      R.R. Li, H.J. Shen, E. Pervaiz, M.H. Yang, Chem. Eng. J. 404 (2021) 126462.

    113. [113]

      A. Benitez, J. Amaro-Gahete, D. Esquivel, et al., Nanomaterials 10 (2020) 424.  doi: 10.3390/nano10030424

    114. [114]

      D. Capkova, M. Almasi, T. Kazda, et al., Electrochim. Acta 354 (2020) 136640.

    115. [115]

      J. Yao, M. Zhang, G.D. Han, et al., Ceram. Int. 46 (2020) 24155-24161.

    116. [116]

      L. Chen, L.W. Huang, G.J. Chen, et al., Chem. Eur. J. 26 (2020) 8926-8934.  doi: 10.1002/chem.202000558

    117. [117]

      J.R. He, A. Bhargav, A. Manthiram, ACS Nano, 15 (2021) 8583-8591.  doi: 10.1021/acsnano.1c00446

    118. [118]

      Z. Zhang, A.H. Shao, D.G. Xiong, et al., ACS Appl. Mater. Interfaces 12 (2020) 19572-19580.  doi: 10.1021/acsami.0c02942

    119. [119]

      P. Zeng, C. Liu, X.F. Zhao, et al., ACS Nano 14 (2020) 11558-11569.  doi: 10.1021/acsnano.0c04054

    120. [120]

      M. Zhao, H.J. Peng, Z.W. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 3779-3783.

    121. [121]

      W.W. Sun, C. Liu, Y.J. Li, et al., ACS Nano 13 (2019) 12137-12147.  doi: 10.1021/acsnano.9b06629

    122. [122]

      Q. Zheng, X. Cheng, H. Li, Catalysts 5 (2015) 1079-1091.  doi: 10.3390/catal5031079

    123. [123]

      W.W. Sun, Y.J. Li, S.K. Liu, et al., Chem. Eng. J. 416 (2021) 129166.

    124. [124]

      T.T. Nguyen, J. Balamurugan, H.W. Go, et al., Chem. Eng. J. 427 (2022) 131774.

  • 加载中
    1. [1]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    2. [2]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    3. [3]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    4. [4]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    5. [5]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    6. [6]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    7. [7]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    8. [8]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    9. [9]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    10. [10]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    11. [11]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    12. [12]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    13. [13]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    14. [14]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    15. [15]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    16. [16]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    17. [17]

      Yunlong LiXinyu ZhangShuang LiuChunsheng LiQiang WangJin YeYong LuJiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501

    18. [18]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    19. [19]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    20. [20]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

Metrics
  • PDF Downloads(6)
  • Abstract views(546)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return