Atom elimination strategy for MoS2 nanosheets to enhance photocatalytic hydrogen evolution
-
* Corresponding author.
E-mail address: wanglonglu@hnu.edu.cn (L. Wang).
Citation:
Xia Liu, Yunhui Hou, Meng Tang, Longlu Wang. Atom elimination strategy for MoS2 nanosheets to enhance photocatalytic hydrogen evolution[J]. Chinese Chemical Letters,
;2023, 34(3): 107489.
doi:
10.1016/j.cclet.2022.05.003
M.A.R. Anjum, H.Y. Jeong, M.H. Lee, et al., Adv. Mater.30 (2018) 1707105.
doi: 10.1002/adma.201707105
N.H. Attanayake, A.C. Thenuwara, A. Patra, et al., ACS Energy Lett. 3 (2018) 7–13.
doi: 10.1021/acsenergylett.7b00865
Q. Chen, H. Li, S. Zhou, et al., ACS Nano 12 (2018) 7721–7730.
doi: 10.1021/acsnano.8b01610
H. Duan, C. Wang, G. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 7251–7258.
doi: 10.1002/anie.202014968
S. Fang, Y. Wen, C.S. Allen, et al., Nat. Commun. 10 (2019) 1127.
doi: 10.1038/s41467-019-08904-9
J. Hong, Z. Hu, M. Probert, et al., Nat. Commun. 6 (2015) 6293.
doi: 10.1038/ncomms7293
Z. Hu, Z. Wu, C. Han, et al., Chem. Soc. Rev. 47 (2018) 3100–3128.
doi: 10.1039/c8cs00024g
S.M. Hus, R. Ge, P.A. Chen, et al., Nat. Nanotechnol. 16 (2021) 58–62.
doi: 10.1038/s41565-020-00789-w
H.Y. Jeong, S.Y. Lee, T.H. Ly, et al., ACS Nano 10 (2016) 770–777.
doi: 10.1021/acsnano.5b05854
L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Chem. Eng. J. 405 (2021) 127028.
doi: 10.1016/j.cej.2020.127028
K.Y. Kim, J. Lee, S. Kang, et al., ACS Catal. 8(2018) 4508–4515.
doi: 10.1021/acscatal.8b00883
G. Li, D. Zhang, Q. Qiao, et al., J. Am. Chem. Soc. 138 (2016) 16632–16638.
doi: 10.1021/jacs.6b05940
L. Li, Z. Qin, L. Ries, et al., ACS Nano 13 (2019) 6824–6834.
doi: 10.1021/acsnano.9b01583
Y. Li, K. Yin, L. Wang, et al., Appl. Catal. B 239 (2018) 537–544.
doi: 10.1016/j.apcatb.2018.05.080
G. Liu, A.W. Robertson, M.M. Li, et al., Nat. Chem. 9 (2017) 810–816.
doi: 10.1038/nchem.2740
L. Xie, L. Wang, W. Zhao, et al., Nat. Commun. 12 (2021) 5070.
doi: 10.1038/s41467-021-25381-1
J. Chen, Y. Tang, S. Wang, et al., Chin. Chem. Lett. 33 (2021). 1468–1474.
T.K. Patra, F. Zhang, D.S. Schulman, et al., ACS Nano 12 (2018) 8006–8016.
doi: 10.1021/acsnano.8b02844
A. Singh, P. Basera, S. Saini, M. Kumar, S. Bhattacharya, J. Phys. Chem. C 124 (2019) 1390–1397.
doi: 10.3390/cancers11091390
J.P. Thiruraman, P. Masih Das, M. Drndić, Adv. Funct. Mater. 29 (2019) 1904668.
doi: 10.1002/adfm.201904668
C. Tsai, H. Li, S. Park, et al., Nat. Commun. 8 (2017) 15113.
doi: 10.1038/ncomms15113
D. Wang, X.B. Li, D. Han, W.Q. Tian, H.B. Sun, Nano Today 16 (2017) 30–45.
doi: 10.1016/j.nantod.2017.07.001
L. Wang, X. Liu, Q. Zhang, et al., Nano Energy 61 (2019) 194–200.
doi: 10.2174/1872212112666180628145856
X. Wang, Y. Zhang, H. Si, et al., J. Am. Chem. Soc. 142 (2020) 4298–4308.
doi: 10.1021/jacs.9b12113
J. Xie, H. Zhang, S. Li, et al., Adv. Mater. 25 (2013) 5807–5813.
doi: 10.1002/adma.201302685
J. Yang, Y. Wang, M.J. Lagos, et al., ACS Nano 13 (2019) 9958–9964.
doi: 10.1021/acsnano.9b05226
D.Y. Li, L.L. Liao, H.Q. Zhou, et al., Mater. Today Phys. 16 (2021) 100314.
doi: 10.1016/j.mtphys.2020.100314
G. Ye, Y. Gong, J. Lin, et al., Nano Lett. 16 (2016) 1097–103.
doi: 10.1021/acs.nanolett.5b04331
X. Xiao, X. Wang, B. Li, et al., Mater. Today Phys. 12 (2020) 100182
doi: 10.1016/j.mtphys.2020.100182
T.N. Ye, L.B. Lv, M. Xu, et al., Nano Energy 15 (2015) 335–342.
doi: 10.1016/j.nanoen.2015.04.033
Y. Yin, J. Han, Y. Zhang, et al., J. Am. Chem. Soc. 138 (2016) 7965–7972.
doi: 10.1021/jacs.6b03714
C. Zhang, C. Wang, F. Yang, et al., ACS Nano 13 (2019) 1595–1602.
X. Zhang, Q. Liao, S. Liu, et al., Nat. Commun. 8 (2017) 15881.
doi: 10.1038/ncomms15881
C. Sun, M. Liu, L. Wang, et al., Chin. Chem. Lett. 33 (2022) 1468–1474.
doi: 10.1016/j.cclet.2021.08.103
W. Zhou, X. Zou, S. Najmaei, et al., Nano Lett. 13 (2013) 2615–2622
doi: 10.1021/nl4007479
Z.C., Zhuang, Y., Li, Y.H., Li, et al., Energy Environ. Sci. 14 (2021) 1016–1028.
doi: 10.1039/d0ee03701j
Z.C., Zhuang, Y., Li, J.Z., Huang, et al., Sci. Bull. 64 (2019) 617–624.
doi: 10.1016/j.scib.2019.04.005
Z.H. Liu, Y. Du, P.F. Zhang, et al., Matter (2021) 3161–3194.
S.H., Wang, L.L., Wang, L.B., Xie, et al., Nano Res. 15 (2022) 4996–5003.
doi: 10.1007/s12274-022-4158-0
Q. Zhou, L.L. Liao, Q.H. Bian, et al., Small 18 (2022) 2105642.
doi: 10.1002/smll.202105642
S.W. Song, L. Yu, X. Xiao, et al., Mater. Today Phys. 13 (2020) 100216.
doi: 10.1016/j.mtphys.2020.100216
X. Cheng, L. Wang, L. Xie, et al., Chem. Eng. J., 439 (2022) 135757.
doi: 10.1016/j.cej.2022.135757
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Bingke Zhang , Dongbo Wang , Jiamu Cao , Wen He , Gang Liu , Donghao Liu , Chenchen Zhao , Jingwen Pan , Sihang Liu , Weifeng Zhang , Xuan Fang , Liancheng Zhao , Jinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877