Cu cluster embedded porous nanofibers for high-performance CO2 electroreduction
-
* Corresponding authors.
E-mail addresses: xinzf521@ahut.edu.cn (Z. Xin), chyf927821@163.com (Y. Chen).
Citation:
Zhifeng Xin, Zibo Yuan, Jingjing Liu, Xinjian Wang, Kejing Shen, Yifa Chen, Ya-Qian Lan. Cu cluster embedded porous nanofibers for high-performance CO2 electroreduction[J]. Chinese Chemical Letters,
;2023, 34(4): 107458.
doi:
10.1016/j.cclet.2022.04.056
J.D. Shakun, P.U. Clark, F. He, et al., Nature 484 (2012) 49–54.
doi: 10.1038/nature10915
J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 43 (2014) 631–675.
doi: 10.1039/C3CS60323G
N.M. Dowell, P.S. Fennell, N. Shah, G.C. Maitland, Nat. Clim. Change 7 (2017) 243–249.
doi: 10.1038/nclimate3231
T.C. Zhuo, Y. Song, G.L. Zhuang, et al., J. Am. Chem. Soc. 143 (2021) 6114–6122.
doi: 10.1021/jacs.0c13048
S. Fu, S. Yao, S. Guo, et al., J. Am. Chem. Soc. 143 (2021) 20792–20801.
doi: 10.1021/jacs.1c08908
P.Q. Liao, J.Q. Shen, J.P. Zhang, Coord. Chem. Rev. 373 (2018) 22–48.
doi: 10.1016/j.ccr.2017.09.001
Y. Pan, R. Lin, Chen Y, et al., J. Am. Chem. Soc. 140 (2018) 4218–4221.
doi: 10.1021/jacs.8b00814
J. Jiao, R. Lin, S. Liu, et al., Nat. Chem. 11 (2019) 222–228.
doi: 10.1038/s41557-018-0201-x
H. Rao, L.C. Schmidt, J. Bonin, M. Robert, Nature 548 (2017) 74–77.
doi: 10.1038/nature23016
P.D. Luna, R. Quintero-Bermudez, C.T. Dinh, et al., Nat. Catal. 1 (2018) 103–110.
doi: 10.1038/s41929-017-0018-9
T. Haas, R. Krause, R.M. Weber, M. Demler, G. Schmid, Nat. Catal. 1 (2018) 32–39.
doi: 10.1038/s41929-017-0005-1
D.D. Zhu, J.L. Liu, S.Z. Qiao, Adv. Mater. 28 (2016) 3423–3452.
doi: 10.1002/adma.201504766
S. Zhao, Y. Wang, J. Dong, et al., Nat. Energy 1 (2016) 16184–16193.
doi: 10.1038/nenergy.2016.184
Q. Li, J. Fu, W. Zhu, et al., J. Am. Chem. Soc. 139 (2017) 4290–4293.
doi: 10.1021/jacs.7b00261
W. Zhang, Y. Hu, L. Ma, et al., Adv. Sci. 5 (2018) 1700275.
doi: 10.1002/advs.201700275
S. Gao, Y. Lin, X. Jiao, et al., Nature 529 (2016) 68–71.
doi: 10.1038/nature16455
M. Asadi, C. Liu, A. Addepalli, et al., Science 353 (2016) 467–470.
doi: 10.1126/science.aaf4767
X. Duan, J. Xu, Z. Wei, et al., Adv. Mater. 29 (2017) 1701784.
doi: 10.1002/adma.201701784
Z.Y. Sun, T. Ma, H.C. Tao, Q. Fan, B. Han, Chem 3 (2017) 560–587.
doi: 10.1016/j.chempr.2017.09.009
S. Zhao, D.W. Wang, R. Amal, et al., Adv. Mater. 31 (2019) 1801526.
doi: 10.1002/adma.201801526
L. Ye, J. Liu, Y. Gao, L. Dai, J. Mater. Chem. A 4 (2016) 15320–15326.
doi: 10.1039/C6TA04801C
Y. Wang, P. Hou, Z. Wang, P. Kang, ChemPhysChem 18 (2017) 3142–3147.
doi: 10.1002/cphc.201700716
L.M. Rodriguez-Albelo, A.R. Ruiz-Salvador, A. Sampieri, et al., J. Am. Chem. Soc. 131 (2009) 16078–16087.
doi: 10.1021/ja905009e
D. Raciti, C. Wang, ACS Energy Lett. 3 (2018) 1545–1556.
doi: 10.1021/acsenergylett.8b00553
S. Nitopi, E. Bertheussen, S.B. Scott, et al., Chem. Rev. 119 (2019) 7610–7672.
doi: 10.1021/acs.chemrev.8b00705
K. Klingan, T. Kottakkat, Z.P. Jovanov, et al., ChemSusChem 11 (2018) 3449–3459.
doi: 10.1002/cssc.201801582
J. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, J. Am. Chem. Soc. 141 (2019) 2490–2499.
doi: 10.1021/jacs.8b12381
C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 7231–7234.
doi: 10.1021/ja3010978
J. Gao, H. Wang, K. Feng, et al., Mater. Adv. 1 (2020) 2286–2292.
doi: 10.1039/d0ma00433b
Y. Zheng, S.Z. Qiao, Natl. Sci. Rev. 5 (2018) 626–627.
doi: 10.1093/nsr/nwy010
L. Jiao, H.L. Jiang, Chem 5 (2019) 786–804.
doi: 10.1016/j.chempr.2018.12.011
C. He, J. Liang, Y.H. Zou, et al., Nat. Sci. Rev. 9 (2022) nwab157.
doi: 10.1093/nsr/nwab157
J. Liang, Q. Wu, Y.B. Huang, R. Cao, EnergyChem 3 (2021) 100064.
doi: 10.1016/j.enchem.2021.100064
Y. Hou, Y.B. Huang, Y.L. Liang, et al., CCS Chem. 1 (2019) 384–395.
doi: 10.31635/ccschem.019.20190011
E. Luo, H. Zhang, X. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 12469–12475.
doi: 10.1002/anie.201906289
H. Zhang, S. Wang, M. Wang, et al., J. Am. Chem. Soc. 139 (2017) 14143–14149.
doi: 10.1021/jacs.7b06514
M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Adv. Mater. 30 (2018) 1705431.
doi: 10.1002/adma.201705431
Y.N. Gong, L. Jiao, Y. Qian, et al., Angew. Chem. Int. Ed. 59 (2020) 2705–2709.
doi: 10.1002/anie.201914977
S.S. Sankar, K. Karthick, K. Sangeetha, et al., J. Mater. Chem. A 9 (2021) 11961–12002.
doi: 10.1039/d1ta01407b
L. Song, T. Xu, D. Gao, et al., Chem. Eur. J. 25 (2019) 6621–6627.
doi: 10.1002/chem.201900700
Z. Li, J. Bu, C. Zhang, et al., New J. Chem. 45 (2021) 10672–10682.
doi: 10.1039/d1nj01369f
W. Gu, J. Lv, B. Quan, et al., J. Alloy. Compd. 806 (2019) 983–991.
doi: 10.1016/j.jallcom.2019.07.334
R. Yun, F. Zhan, X. Wang, et al., Small (2020) 2006951.
L. Pan, T. Muhammad, L. Ma, et al., Appl. Catal. B: Environ. 189 (2016) 181–191.
doi: 10.1016/j.apcatb.2016.02.066
C. Yu, Y. Wang, J. Cui, et al., J. Mater. Chem. A 6 (2018) 8396–8404.
doi: 10.1039/c8ta01426d
L.F. Chen, Y. Lu, L. Yu, X.W. Lou, Energy Environ. Sci. 10 (2017) 1777–1783.
doi: 10.1039/C7EE00488E
L. Lin, H. Li, C. Yan, et al., Adv. Mater. 31 (2019) 1903470.
doi: 10.1002/adma.201903470
P. Grégoire, G.M. Maria, R.M. Catherine, et al., J. Am. Chem. Soc. 140 (2018) 3613–3618.
doi: 10.1021/jacs.7b11788
Z. Xin, Y.R. Wang, Y. Chen, et al., Nano Energy 67 (2020) 104233.
doi: 10.1016/j.nanoen.2019.104233
A.R. Horrocks, J. Zhang, M.E. Hall, Polym. lnt. 33 (1994) 303–314.
doi: 10.1002/pi.1994.210330310
W.H. Cheng, Appl. Catal. A: General 130 (1995) 13–15.
doi: 10.1016/0926-860X(95)00102-6
W.L. Dai, Q. Sun, J.F. Deng, W. Dong, Y.H. Sun, Appl. Surf. Sci. 177 (2001) 172.
doi: 10.1016/S0169-4332(01)00229-X
A.M. Limaye, J.S. Zeng, A.P. Willard, K. Manthiram, Nat. Commun. 12 (2021) 703.
doi: 10.1038/s41467-021-20924-y
H. Cheng, X. Wu, M. Feng, et al., ACS Catal. 11 (2021) 12673–12681.
doi: 10.1021/acscatal.1c02319
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176