Performance improvement of air-breathing proton exchange membrane fuel cell (PEMFC) with a condensing-tower-like curved flow field
-
* Corresponding author.
E-mail address: xczhou2013@sinano.ac.cn (X. Zhou).
Citation:
Hanqing Jin, Siyi Zou, Qinglin Wen, Yali Li, Fandi Ning, Pengpeng Xu, Saifei Pan, Xiaochun Zhou. Performance improvement of air-breathing proton exchange membrane fuel cell (PEMFC) with a condensing-tower-like curved flow field[J]. Chinese Chemical Letters,
;2023, 34(4): 107441.
doi:
10.1016/j.cclet.2022.04.039
T. Zhu, Y. Yang, Y. Liu, et al., Nano Energy 78 (2020) 105397.
doi: 10.1016/j.nanoen.2020.105397
H. Moon, J. Chung, B. Kim, et al., Nano Energy 31 (2017) 525–532.
doi: 10.1016/j.nanoen.2016.11.046
Y. Wang, Y. Yang, Z.L. Wang, NPJ Flex. Electron. 1 (2017) 2397–4621.
S. Ebrahimi, R. Roshandel, K. Vijayaraghavan, Int. J. Hydrog. Energy 41 (2016) 22260–22273.
doi: 10.1016/j.ijhydene.2016.07.247
F. Ning, X. He, Y. Shen, et al., ACS Nano 11 (2017) 5982–5991.
doi: 10.1021/acsnano.7b01880
Y. Jia, B. Sunden, G. Xie, Int. J. Energy. Res. 43 (2018) 2722–2736.
J. Zhang, Y. Hu, Int. J. Hydrog. Energy 45 (2020) 23480–23489.
doi: 10.1016/j.ijhydene.2020.06.167
R.B. Lakshmi, N.P. Harikrishnan, A.V. Juliet, Appl. Surf. Sci. 418 (2017) 99–102.
doi: 10.1016/j.apsusc.2017.02.125
X. Chen, Y. Chen, Q. Liu, et al., Energy Rep. 7 (2021) 336–347.
doi: 10.1016/j.egyr.2021.01.003
L. Qu, Z. Wang, X. Guo, et al., J. Energy Chem. 35 (2019) 95–103.
doi: 10.1016/j.jechem.2018.09.004
Y. Song, C. Zhang, A. Deshpande, et al., Int. J. Heat Mass Transf. 158 (2020) 119771.
doi: 10.1016/j.ijheatmasstransfer.2020.119771
S. Khosravi H, Q. Abbas, K. Reichmann, Int. J. Hydrog. Energy (2021) 03603199.
Q. Li, L. Yin, H. Yang, et al., IEEE Trans. Ind. Electron. 68 (2021) 12418–12429.
doi: 10.1109/TIE.2020.3040662
R.K.A.M. Mallant, J. Power Sour. 118 (2003) 424–429.
doi: 10.1016/S0378-7753(03)00108-3
A. Schmitz, M. Tranitz, S. Wagner, et al., J. Power Sour. 118 (2003) 162–171.
doi: 10.1016/S0378-7753(03)00080-6
A. Mahdavi, A.A. Ranjbar, M. Gorji, et al., Appl. Energy 228 (2018) 656–666.
doi: 10.1016/j.apenergy.2018.06.101
P. Gao, Z. Xie, X. Wu, et al., Int. J. Hydrog. Energy 43 (2018) 20947–20958.
doi: 10.1016/j.ijhydene.2018.09.046
Z. Xu, D. Qiu, P. Yi, et al., Prog. Nat. Sci. 30 (2020) 815–824.
doi: 10.1016/j.pnsc.2020.10.015
S. Chugh, C. Chaudhari, K. Sonkar, et al., Int. J. Hydrog. Energy 45 (2020) 8866–8874.
doi: 10.1016/j.ijhydene.2020.01.019
S. Kim, I. Hong, J. Ind. Eng. Chem. 14 (2008) 357–364.
doi: 10.1016/j.jiec.2008.01.007
T. Park, Y.S. Kang, S. Jang, et al., NPG Asia Mater. 9 (2017) e384–e385.
doi: 10.1038/am.2017.72
R. O'Hayre, T. Fabian, S. Litster, et al., J. Power Sour. 167 (2007) 118–129.
doi: 10.1016/j.jpowsour.2007.01.073
P. Manoj Kumar, V. Parthasarathy, Energy 51 (2013) 457–461.
doi: 10.1016/j.energy.2012.12.015
Z. Williamson, D. Kim, D.K. Chun, et al., Appl. Therm. Eng. 31 (2011) 3761–3767.
doi: 10.1016/j.applthermaleng.2011.06.010
X. Xu, W. Yang, X. Zhuang, et al., Int. J. Hydrog. Energy 44 (2019) 25010–25020.
doi: 10.1016/j.ijhydene.2019.07.237
Z.R. Willamson, D. Chun, K. Kwon, et al., Appl. Therm. Eng. 56 (2013) 54–61.
doi: 10.1016/j.applthermaleng.2013.02.036
N. Bussayajarn, H. Ming, K.K. Hoong, et al., Int. J. Hydrog. Energy 34 (2009) 7761–7767.
doi: 10.1016/j.ijhydene.2009.07.077
C. Zhao, S. Xing, M. Chen, et al., Int. J. Hydrog. Energy 45 (2020) 17771–17781.
doi: 10.1016/j.ijhydene.2020.04.165
D. Qiu, L. Peng, J. Tang, et al., Energy 198 (2020) 117334.
doi: 10.1016/j.energy.2020.117334
H. Guo, Y. Yang, T. Cheng, et al., Energies 14 (2021) 1996–1999.
doi: 10.3390/en14071996
G. Song, X. Zhi, F. Fan, et al., Appl. Therm. Eng. 180 (2020) 115797.
doi: 10.1016/j.applthermaleng.2020.115797
J. Wei, F. Ning, C. Bai, et al., J. Mater. Chem. A 8 (2020) 5986–5994.
doi: 10.1039/C9TA13944C
A.H. Taheri, S. Abolghasemi, K. Suresh, Eng. Comput. 36 (2019) 1831–1848.
M.J. Martin, E. Andres, C. Lozano, et al., Aerosp. Sci. Technol. 37 (2014) 26–36.
doi: 10.1016/j.ast.2014.05.003
S. Liu, T. Chen, Y. Xie, et al., Int. J. Hydrog. Energy 44 (2019) 29618–29630.
doi: 10.1016/j.ijhydene.2019.06.046
Z. Yuan, M. Zhang, K. Zuo, et al., Energy 150 (2018) 28–37.
doi: 10.1016/j.energy.2018.02.132
S. Liu, T. Chen, C. Zhang, et al., Appl. Energy 261 (2020) 114454.
doi: 10.1016/j.apenergy.2019.114454
S. Shimpalee, M. Ohashi, J.W. Van Zee, et al., Electrochim. Acta 54 (2009) 2899–2911.
doi: 10.1016/j.electacta.2008.11.008
S.I. Nefedkin, M.A. Klimova, V.S. Glasov, et al., Fuel Cells 21 (2021) 234–253.
doi: 10.1002/fuce.202000163
D.A. McKahn, Int. J. Hydrog. Energy 40 (2015) 7168–7181.
doi: 10.1016/j.ijhydene.2015.02.132
C.Y. Wen, Y.S. Lin, C.H. Lu, et al., Int. J. Hydrog. Energy 36 (2011) 6082–6089.
doi: 10.1016/j.ijhydene.2011.02.052
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
Ruiheng Liang , Huizhong Wu , Zhongzheng Hu , Ge Song , Xuyang Zhang , Omotayo A. Arotiba , Minghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Yubin Feng , Weihang Zhu , Xinting Yang , Zhe Yang , Chenke Wei , Yukai Guo , Andrew K. Whittaker , Chun Shen , Yue Zhao , Wenrui Qu , Bai Yang , Quan Lin . Amphibian-inspired conductive ionogel stabilizing in air/water as a wearable amphibious flexible sensor for drowning alarms. Chinese Chemical Letters, 2025, 36(4): 110554-. doi: 10.1016/j.cclet.2024.110554
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
Chengmin Hu , Pingxuan Liu , Ziyang Song , Yaokang Lv , Hui Duan , Li Xie , Ling Miao , Mingxian Liu , Lihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Yi Zhu , Jingyan Zhang , Yuchao Zhang , Ying Chen , Guanghui An , Ren Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573
Jie Wu , Xiaoqing Yu , Guoxing Li , Su Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107