Constructing oxygen-deficient V2O3@C nanospheres for high performance potassium ion batteries
-
* Corresponding author.
E-mail address: esyangc@scut.edu.cn (C. Yang).
Citation:
Qiang Deng, Luolan Wang, Jing Li, Qian Cheng, Xiaozhao Liu, Changdong Chen, Qimeng Zhang, Wentao Zhong, Hua Wang, Lijue Wu, Chenghao Yang. Constructing oxygen-deficient V2O3@C nanospheres for high performance potassium ion batteries[J]. Chinese Chemical Letters,
;2023, 34(3): 107372.
doi:
10.1016/j.cclet.2022.03.095
S.M. Mousavi, M. Zarei, S.A. Hashemi, et al., Potassium Ion Batter. Mater. Appl. (2020) 43–98.
Y. Li, Y. Lu, C. Zhao, et al., Energy Storage Mater. 7 (2017) 130–151.
doi: 10.1016/j.ensm.2017.01.002
B. Scrosati, J. Hassoun, Y. -. K. Sun, Energy Environ. Sci. 4 (2011) 3287–3295.
doi: 10.1039/c1ee01388b
S.W. Kim, D.H. Seo, X. Ma, et al., Adv. Energy Mater. 2 (2012) 710–721.
doi: 10.1002/aenm.201200026
Q. Zhang, Z. Wang, X. Li, et al., Chem. Eng. J. 431 (2021) 133456.
X. Wu, D.P. Leonard, X. Ji, Chem. Mater. 29 (2017) 5031–5042.
doi: 10.1021/acs.chemmater.7b01764
Q. Deng, F.H. Zheng, W.T. Zhong, et al., Chem. Eng. J. 392 (2020) 12375.
Y. Liu, Q. Deng, Y. Li, et al., ACS Nano 15 (2021) 1121–1132.
doi: 10.1021/acsnano.0c08094
Y. Xia, W. Jin, Y. Qi, et al., Chin. Chem. Lett. 32 (2021) 2433–2437.
doi: 10.1016/j.cclet.2021.01.025
K. Lei, F. Li, C. Mu, et al., Energy Environ. Sci. 10 (2017) 552–557.
doi: 10.1039/C6EE03185D
S. Komaba, T. Hasegawa, M. Dahbi, et al., Electrochem. Commun. 60 (2015) 172–175.
doi: 10.1016/j.elecom.2015.09.002
W. Zhang, Y. Liu, Z. Guo, Sci. Adv. 5 (2019) eaav7412.
doi: 10.1126/sciadv.aav7412
X. Zou, P. Xiong, J. Zhao, et al., Phys. Chem. Chem. Phys. 19 (2017) 26495–26506.
doi: 10.1039/C7CP03852F
X. Min, J. Xiao, M. Fang, et al., Energy Environ. Sci. 14 (2021) 2186–2243.
doi: 10.1039/D0EE02917C
W. Zhu, A. Li, Z. Wang, et al., Small 17 (2021) 2006424.
doi: 10.1002/smll.202006424
Y. Li, W. Zhong, C. Yang, et al., Chem. Eng. J. 358 (2019) 1147–1154.
doi: 10.1016/j.cej.2018.10.135
A.P. Cohn, N. Muralidharan, R. Carter, et al., J. Mater. Chem. A 4 (2016) 14954–14959.
doi: 10.1039/C6TA06797B
B. Xu, S. Qi, F. Li, et al., Chin. Chem. Lett. 31 (2020) 217–222.
doi: 10.1016/j.cclet.2019.10.009
V. Gabaudan, R. Berthelot, L. Stievano, et al., J. Phys. Chem. C 122 (2018) 18266–18273.
doi: 10.1021/acs.jpcc.8b04575
J. Huang, X. Lin, H. Tan, et al., Adv. Energy Mater. 8 (2018) 1703496.
doi: 10.1002/aenm.201703496
W. Zhang, W. Huang, Q. Zhang, Chem. Eur. J. 27 (2021) 6131–6144.
doi: 10.1002/chem.202005259
Y. Liang, C. Luo, F. Wang, et al., Adv. Energy Mater. 9 (2019) 1802986.
doi: 10.1002/aenm.201802986
J. Zhou, H. Zhao, Q. Zhang, et al., Chem. Commun. 55 (2019) 1406–1409.
doi: 10.1039/C8CC09205B
Y. Li, Q. Zhang, Y. Yuan, et al., Adv. Energy Mater. 10 (2020) 2000717.
doi: 10.1002/aenm.202000717
D. Xu, L. Chen, X. Su, et al., Adv. Funct. Mater. 32 (2022) 2110223.
doi: 10.1002/adfm.202110223
C. Hu, K. Ma, Y. Hu, et al., Green Energy Environ. 6 (2021) 75–82.
doi: 10.1016/j.gee.2020.02.001
Y. Li, C. Yang, F. Zheng, et al., Nano Energy 59 (2019) 582–590.
doi: 10.1016/j.nanoen.2019.03.002
T. Jin, H. Li, Y. Li, et al., Nano Energy 50 (2018) 462–467.
doi: 10.1016/j.nanoen.2018.05.056
F. Chen, S. Wang, X.D. He, et al., J. Mater. Chem. A 8 (2020) 13261–13266.
doi: 10.1039/D0TA01057J
J. Hu, Y. Xie, J. Zheng, et al., ACS Appl. Mater. Interfaces 13 (2021) 12149–12158.
doi: 10.1021/acsami.1c01303
J. Lu, C. Wang, G. Xia, et al., J. Mater. Chem. A 8 (2020) 23939–23946.
doi: 10.1039/D0TA08845E
J. Cao, D. Zhang, Y. Yue, et al., Nano Energy 84 (2021) 105876.
doi: 10.1016/j.nanoen.2021.105876
X. Deng, K. Zou, R. Momen, et al., Sci. Bull. 66 (2021) 1858–1868.
doi: 10.1016/j.scib.2021.04.042
Q. Gan, H. He, Y. Zhu, et al., ACS Nano 13 (2019) 9247–9258.
doi: 10.1021/acsnano.9b03766
Y. Ding, Y. Peng, S. Chen, et al., ACS Appl. Mater. Interfaces 11 (2019) 44109–44117.
doi: 10.1021/acsami.9b13729
Y. Li, K. Xiao, C. Huang, et al., Nano Micro Lett. 13 (2021) 1.
doi: 10.1007/s40820-020-00525-y
S. Petnikota, J.J. Toh, J.Y. Li, et al., ChemElectroChem 6 (2019) 493–503.
doi: 10.1002/celc.201801244
H. Luo, B. Wang, C. Wang, et al., Energy Storage Mater. 33 (2020) 390–398.
doi: 10.1016/j.ensm.2020.08.011
N. Liu, X. Wu, L. Fan, et al., Adv. Mater. 32 (2020) 1908420.
doi: 10.1002/adma.201908420
S. Zhao, K. Yan, P. Munroe, et al., Adv. Energy Mater. 9 (2019) 1803757.
doi: 10.1002/aenm.201803757
Q. Deng, Q. Cheng, X. Liu, et al., Chem. Eng. J. 430 (2022) 132710.
doi: 10.1016/j.cej.2021.132710
H. Geng, M. Cheng, B. Wang, et al., Adv. Funct. Mater. 30 (2020) 1907684.
doi: 10.1002/adfm.201907684
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
Yixin Lu , Minghan Qin , Shixian Zhang , Zhen Liu , Wang Sun , Zhenhua Wang , Jinshuo Qiao , Kening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500