Emerging nanozymes for potentiating radiotherapy and radiation protection
-
* Corresponding authors.
E-mail addresses: chongyu@suda.edu.cn (Y. Chong), ccge@suda.edu.cn (C. Ge).
Citation:
Yu Chong, Jiayu Ning, Shengyi Min, Jiaquan Ye, Cuicui Ge. Emerging nanozymes for potentiating radiotherapy and radiation protection[J]. Chinese Chemical Letters,
;2022, 33(7): 3315-3324.
doi:
10.1016/j.cclet.2022.03.054
M. Gospodarowicz, J.C.O. Glob. Oncol. 7 (2021) 144–145.
doi: 10.1200/go.20.00562
A.J. Wisdom, C.S. Hong, A.J. Lin, et al., Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 18584–18589.
doi: 10.1073/pnas.1901562116
Y.M. Zhang, F. Huang, C.H. Ren, et al., Adv. Sci. 6 (2019) 1801806.
doi: 10.1002/advs.201801806
Y.L. Wei, J.Y. Xu, R. Zhang, et al., Appl. Radiat. Isot. 146 (2019) 72–77.
doi: 10.1016/j.apradiso.2019.01.014
B. Wang, J.L. Dong, H.W. Xiao, et al., Sci. Total Environ. 732 (2020) 139274.
doi: 10.1016/j.scitotenv.2020.139274
A.M. Buckley, N. Lynam-Lennon, H. O'Neill, J. O'Sullivan, Nat. Rev. Gastroenterol. Hepatol. 17 (2020) 298–313.
doi: 10.1038/s41575-019-0247-2
M. King, S. Joseph, A. Albert, et al., Oncology 98 (2020) 61–80.
doi: 10.1159/000502979
S. Bonvalot, P.L. Rutkowski, J. Thariat, Lancet Oncol. 20 (2019) 468-468.
R.Y. Zhao, H.L. Liu, Y.M. Li, M.L. Guo, X.D. Zhang, Bioconjugate Chem. 32 (2021) 411–429.
doi: 10.1021/acs.bioconjchem.0c00648
Y. Chong, J. Huang, X.Y. Xu, et al., Bioconjugate Chem. 31 (2020) 1756–1765.
doi: 10.1021/acs.bioconjchem.0c00224
Y.Y. Chen, H. Zhong, J.B. Wang, et al., Chem. Sci. 11 (2020) 6098.
doi: 10.1039/d0sc90108c
F. Liu, L. Lin, Y. Zhang, et al., Adv. Mater. 31 (2019) 1902885.
doi: 10.1002/adma.201902885
J.J.X. Wu, X.Y. Wang, Q. Wang, et al., Chem. Soc. Rev. 48 (2019) 1004–1076.
doi: 10.1039/c8cs00457a
D.W. Jiang, D.L. Ni, Z.T. Rosenkrans, et al., Chem. Soc. Rev. 48 (2019) 3683–3704.
doi: 10.1039/c8cs00718g
Y.Y. Huang, J.S. Ren, X.G. Qu, Chem. Rev. 119 (2019) 4357–4412.
doi: 10.1021/acs.chemrev.8b00672
L.Z. Gao, J. Zhuang, L. Nie, et al., Nat. Nanotechnol. 2 (2007) 577–583.
doi: 10.1038/nnano.2007.260
Z.R. Wang, R.F. Zhang, X.Y. Yan, K.L. Fan, Mater. Today41 (2020) 81–119.
doi: 10.1016/j.mattod.2020.08.020
R.F. Wu, Y. Chong, G. Fang, et al., Adv. Funct. Mater. 28 (2018) 1801484.
doi: 10.1002/adfm.201801484
N. Singh, M.A. Savanur, S. Srivastava, P. D'Silva, G. Mugesh, Angew. Chem. Int. Edit. 56 (2017) 14267–14271.
doi: 10.1002/anie.201708573
Y.X. Zhang, P. Murugesan, K. Huang, H. Cai, Nat. Rev. Cardiol. 17 (2020) 170–194.
doi: 10.1038/s41569-019-0260-8
Y. Chong, Q. Liu, C.C. Ge, Nano Today37 (2021) 101076.
doi: 10.1016/j.nantod.2021.101076
S.S. Gao, H. Lin, H.X. Zhang, et al., Adv. Sci. 6 (2019) 1801733.
doi: 10.1002/advs.201801733
Y. Chong, X. Dai, G. Fang, et al., Nat. Commun. 9 (2018) 4861.
doi: 10.1038/s41467-018-07257-z
H.S. Tehrani, A.A. Moosavi-Movahedi, Prog. Biophys. Mol. Bio. 140 (2018) 5–12.
doi: 10.1016/j.pbiomolbio.2018.03.001
S.Y. Li, W.J. Sun, Y. Luo, et al., J. Mater. Chem. B9 (2021) 4643–4653.
doi: 10.1039/d1tb00486g
W. Pan, B.J. Cui, P. Gao, et al., Chem. Commun. 56 (2020) 547–550.
doi: 10.1039/c9cc07878a
Y. Liu, H.H. Wu, M. Li, J.J. Yin, Z.H. Nie, Nanoscale 6 (2014) 11904–11910.
doi: 10.1039/C4NR03848G
Z.M. He, X.L. Huang, C. Wang, et al., Angew. Chem. Int. Edit. 58 (2019) 8752–8756.
doi: 10.1002/anie.201902612
J.Y. Wang, X.Y. Mu, Y.H. Li, et al., Small14 (2018) 1703736.
doi: 10.1002/smll.201703736
C.Q. Zhong, X.J. Huang, S. Zhang, et al., Braz. J. Pharm. Sci. 53 (2017) 17081.
H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162–163.
doi: 10.1038/318162a0
A.S. Karakoti, S. Singh, A. Kumar, et al., J. Am. Chem. Soc. 131 (2009) 14144–14145.
doi: 10.1021/ja9051087
C.C. Ge, G. Fang, X.M. Shen, et al., ACS Nano10 (2016) 10436–10445.
doi: 10.1021/acsnano.6b06297
Y. Liu, H.H. Wu, Y. Chong, et al., ACS Appl. Mater. Interfaces7 (2015) 19709–19717.
doi: 10.1021/acsami.5b05180
Y. Chong, C.C. Ge, G. Fang, et al., ACS Nano10 (2016) 8690–8699.
doi: 10.1021/acsnano.6b04061
S. Goel, D.L. Ni, W.B. Cai, ACS Nano11 (2017) 5233–5237.
doi: 10.1021/acsnano.7b03675
X.F. Chen, J.B. Song, X.Y. Chen, H.H. Yang, Chem. Soc. Rev. 48 (2019) 3073–3101.
doi: 10.1039/c8cs00921j
J.N. Xie, L.J. Gong, S. Zhu, et al., Adv. Mater. 31 (2019) 1802244.
doi: 10.1002/adma.201802244
G.S. Song, L. Cheng, Y. Chao, K. Yang, Z. Liu, Adv. Mater. 29 (2017) 1700996.
doi: 10.1002/adma.201700996
Z. Wang, S.W. Liu, L. Wang, et al., ACS Appl. Bio Mater. 3 (2020) 5080–5092.
doi: 10.1021/acsabm.0c00573
J.S. Lu, Z.H. Guo, W.S. Xie, et al., Biomater. Sci. 9 (2021) 3979–3988.
doi: 10.1039/d1bm00306b
Z.L. Dong, L.Z. Feng, Y. Chao, et al., Nano Lett. 19 (2019) 805–815.
doi: 10.1021/acs.nanolett.8b03905
Q. Liu, Y. Shi, Y. Chong, C.C. Ge, ACS Appl. Bio Mater. 4 (2021) 1843–1851.
doi: 10.1021/acsabm.0c01537
R.Y. Zhou, H.M. Wang, Y.F. Yang, et al., Biomaterials 189 (2019) 11–22.
doi: 10.1016/j.biomaterials.2018.10.016
R. Cheng, H.M. Liu, X.H. Dong, et al., Chem. Eng. J. 394 (2020) 124872.
doi: 10.1016/j.cej.2020.124872
X. Wang, C.Y. Zhang, J.F. Du, et al., ACS Nano13 (2019) 5947–5958.
doi: 10.1021/acsnano.9b01818
C.Y. Zhang, L. Yan, X.H. Wang, et al., Nano Lett. 19 (2019) 1749–1757.
doi: 10.1021/acs.nanolett.8b04763
C.Y. Zhang, X. Wang, X. Dong, et al., Biomaterials 276 (2021) 121023.
doi: 10.1016/j.biomaterials.2021.121023
P. Prasad, C.R. Gordijo, A.Z. Abbasi, et al., ACS Nano8 (2014) 3202–3212.
doi: 10.1021/nn405773r
L.L. Tian, Q. Chen, X. Yi, et al., Small13 (2017) 1700640.
doi: 10.1002/smll.201700640
J.W. Chen, Q. Chen, C. Liang, et al., Nanoscale 9 (2017) 14826–14835.
doi: 10.1039/C7NR05316A
F. Gong, J.W. Chen, X. Han, et al., J. Mater. Chem. B6 (2018) 2250–2257.
doi: 10.1039/c8tb00070k
R.F. Zhang, L. Chen, Q. Liang, et al., Nano Today41 (2021) 101317.
doi: 10.1016/j.nantod.2021.101317
R.Z. Hu, Z.X. Chen, C. Dai, et al., Biomaterials 269 (2021) 120455.
doi: 10.1016/j.biomaterials.2020.120455
L.Z. Feng, Z.L. Dong, C. Liang, et al., Biomaterials 181 (2018) 81–91.
doi: 10.1016/j.biomaterials.2018.07.049
Y.Z. Yao, P.Z. Li, J.K. He, et al., ACS Appl. Mater. Interfaces13 (2021) 28650–28661.
doi: 10.1021/acsami.1c05669
S.X. Lv, W. Long, J.C. Chen, et al., Nanoscale 12 (2020) 548–557.
doi: 10.1039/c9nr08192e
Y. Yang, M. Chen, B.Z. Wang, et al., Angew. Chem. Int. Edit. 58 (2019) 15069–15075.
doi: 10.1002/anie.201906758
K.Y. Ni, G.X. Lan, Y. Song, Z.Y. Hao, W.B. Lin, Chem. Sci. 11 (2020) 7641–7653.
doi: 10.1039/d0sc01949f
W.P. Fan, W.B. Bu, B. Shen, et al., Adv. Mater. 27 (2015) 4155–4161.
doi: 10.1002/adma.201405141
D.M. Zhu, M. Lyu, W. Jiang, et al., J. Mater. Chem. B8 (2020) 5312–5319.
doi: 10.1039/d0tb00676a
L.T. Meng, Y.L. Cheng, S.J. Gan, et al., Mol. Pharm. 15 (2018) 447–457.
doi: 10.1021/acs.molpharmaceut.7b00808
X.T. Zhou, M. You, F.H. Wang, et al., Adv. Mater. 33 (2021) 2100556.
doi: 10.1002/adma.202100556
S.C. Jia, S.F. Ge, X.Q. Fan, K.W. Leong, J. Ruan, Nanomedicine16 (2021) 759–778.
doi: 10.2217/nnm-2020-0448
S. Rey, L. Schito, M. Koritzinsky, B.G. Wouters, Adv. Drug Deliv. Rev. 109 (2017) 45–62.
doi: 10.1016/j.addr.2016.10.002
H.E. Barker, J.T.E. Paget, A.A. Khan, K.J. Harrington, Nat. Rev. Cancer15 (2015) 409–425.
doi: 10.1038/nrc3958
C. Zhang, L. Yan, Z.J. Gu, Y.L. Zhao, Chem. Sci. 10 (2019) 6932–6943.
doi: 10.1039/c9sc02107h
A. Sahu, I. Kwon, G. Tae, Biomaterials 228 (2020) 119578.
doi: 10.1016/j.biomaterials.2019.119578
H.M. Liu, R. Cheng, X.H. Dong, et al., Inorg. Chem. 59 (2020) 3482–3493.
doi: 10.1021/acs.inorgchem.9b03280
C.R. Gordijo, A.Z. Abbasi, M.A. Amini, et al., Adv. Funct. Mater. 25 (2015) 1858–1872.
doi: 10.1002/adfm.201404511
A.Z. Abbasi, C.R. Gordijo, M.A. Amini, et al., Cancer Res. 76 (2016) 6643–6656.
doi: 10.1158/0008-5472.CAN-15-3475
M.H. Cho, E.S. Choi, S. Kim, et al., Front. Chem. 5 (2017) 109.
doi: 10.3389/fchem.2017.00109
Y.D. Wang, S.Z. Song, T. Lu, et al., Biomaterials 220 (2019) 119405.
doi: 10.1016/j.biomaterials.2019.119405
Y. Li, K.H. Yun, H. Lee, et al., Biomaterials 197 (2019) 12–19.
doi: 10.1016/j.biomaterials.2019.01.004
H.J. Wang, D.L. Jia, D.D. Yuan, et al., J. Nanobiotechnology19 (2021) 138.
doi: 10.1186/s12951-021-00885-6
E.H. Donnelly, J.B. Nemhauser, J.M. Smith, et al., South. Med. J. 103 (2010) 541–546.
doi: 10.1097/SMJ.0b013e3181ddd571
V.K. Singh, T.M. Seed, Expert Opin. Drug Saf. 18 (2019) 1077–1090.
doi: 10.1080/14740338.2019.1666104
A.L. Popov, S.I. Zaichkina, N.R. Popova, et al., RSC Adv. 6 (2016) 106141–106149.
doi: 10.1039/C6RA18566E
X.D. Zhang, J.X. Zhang, J.Y. Wang, et al., ACS Nano10 (2016) 4511–4519.
doi: 10.1021/acsnano.6b00321
V. Jacevic, D. Jovic, K. Kuca, et al., J. Appl. Biomed. 14 (2016) 285–297.
doi: 10.1016/j.jab.2016.05.004
F.J. Xu, X.Y. Mu, J.Y. Wang, et al., J. Biomed. Nanotechnol. 13 (2017) 1512–1521.
doi: 10.1166/jbn.2017.2468
W. Long, J.Y. Wang, F.J. Xu, et al., Chin. Chem. Lett. 31 (2020) 269–274.
doi: 10.1016/j.cclet.2019.03.044
H. Li, Z.Y. Yang, C. Liu, et al., Free Radic. Biol. Med. 87 (2015) 26–35.
doi: 10.1016/j.freeradbiomed.2015.06.010
J.N. Xie, N. Wang, X.H. Dong, et al., ACS Appl. Mater. Interfaces11 (2019) 2579–2590.
doi: 10.1021/acsami.8b00949
J.Y. Wang, X.J. Cui, H.B. Li, et al., Nano Res. 11 (2018) 2821–2835.
doi: 10.1007/s12274-017-1912-9
X.D. Zhang, Y.Q. Jing, S.S. Song, Nanomedicine13 (2017) 1597–1605.
doi: 10.1016/j.nano.2017.02.018
X.Y. Ren, M.F. Huo, M.M. Wang, ACS Nano13 (2019) 6438–6454.
doi: 10.1021/acsnano.8b09327
W. Long, X.Y. Mu, J.Y. Wang, Front. Chem. 7 (2019) 784.
doi: 10.3389/fchem.2019.00784
J. Colon, N. Hsieh, A. Ferguson, Nanomedicine6 (2010) 698–705.
doi: 10.1016/j.nano.2010.01.010
S.I. Han, S.W. Lee, M.G. Cho, Adv. Mater. 32 (2020) 2001566.
doi: 10.1002/adma.202001566
C.Y. Wang, J.N. Xie, X.H. Dong, Small16 (2020) 1906915.
doi: 10.1002/smll.201906915
J.N. Xie, C.Y. Wang, N. Wang, Biomaterials 244 (2020) 119940.
doi: 10.1016/j.biomaterials.2020.119940
X.H. Li, W.C. Cui, L. Hull, et al., Radiat. Res. 190 (2018) 612–622.
doi: 10.1667/rr15087.1
S. Sun, H.L. Liu, Q. Xin, et al., Nano Lett. 21 (2021) 2562–2571.
doi: 10.1021/acs.nanolett.0c05148
A.A. Vernekar, D. Sinha, S. Srivastava, et al., Nat. Commun. 5 (2014) 5301.
doi: 10.1038/ncomms6301
N.R. Popova, A.L. Popov, A.M. Ermakov, V.V. Reukov, V.K. Ivanov, Molecules25 (2020) 2957.
doi: 10.3390/molecules25132957
A. Salvetti, G. Gambino, L. Rossi, et al., Mat. Sci. Eng. C-Mater. 115 (2020) 111113.
doi: 10.1016/j.msec.2020.111113
X.T. Bai, J.Y. Wang, X.Y. Mu, et al., ACS Biomater. Sci. Eng. 3 (2017) 460–470.
doi: 10.1021/acsbiomaterials.6b00714
W.L. Huang, J.S. Yu, J.W. Jones, et al. Health Phys. 116 (2019) 516–528.
doi: 10.1097/hp.0000000000000951
M. Soh, D.W. Kang, H.G. Jeong, Angew. Chem. Int. Edit. 56 (2017) 11399–11403.
doi: 10.1002/anie.201704904
J.N. Xie, M.R. Zhao, C.Y. Wang, et al., Chem. Eng. J. 430 (2022) 132866.
doi: 10.1016/j.cej.2021.132866
Xiaoshuai Wu , Bailei Wang , Yichen Li , Xiaoxuan Guan , Mingjing Yin , Wenquan Lv , Yin Chen , Fei Lu , Tao Qin , Huyang Gao , Weiqian Jin , Yifu Huang , Cuiping Li , Ming Gao , Junyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211
Kai Li , Hui Fang , Feixia Ruan , Xiaochun Xie , Huicong Zhou , Zhenjun Luo , Dan Shao , Mingqiang Li , Qing Yuan , Fangman Chen , Yu Tao . ROS-neutralizing surface engineering protects immunotoxicity of organic nanoscintillator-directed radiodynamic therapy. Chinese Chemical Letters, 2025, 36(12): 111261-. doi: 10.1016/j.cclet.2025.111261
Di Zhang , Xu He , Xiaoying Kang , Xue Meng , Ji Qi , Zhifang Wu , Ningbo Li . A photo-accelerated nanoplatform for image-guided synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(12): 110942-. doi: 10.1016/j.cclet.2025.110942
Jiaxi Wang , Zhiwei Gao , Hao Liang , Qianyue Liu , Weiqian Jin , Huyang Gao , Bailei Wang , Ruikai Zhu , Jiahao Huang , Xiaowen Li , Xingmou Wu , Weijiu Mo , Yinhan Liao , Ming Gao , Xiaojie Li , Cuiping Li . NIR stimulated epigallocatechin gallate loaded polydopamine with enhanced antibacterial and ROS scavenging abilities for improved infectious wound healing. Chinese Chemical Letters, 2025, 36(7): 110569-. doi: 10.1016/j.cclet.2024.110569
Guanghui Lin , Jieyao Chen , Xiaojia Liu , Yitong Lin , Xudong Zhu , Guotao Yuan , Bowen Yang , Shuanshuan Guo , Yue Pan , Jianhua Zhou . Sustained modulation of tumor microenvironment via sorafenib-loaded mesoporous ferromanganese nanozymes for enhanced apoptosis-ferroptosis cancer therapy. Chinese Chemical Letters, 2025, 36(8): 111018-. doi: 10.1016/j.cclet.2025.111018
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Yueru Wei , Qi Miao , Miaomiao Zhang , Wenying Zhang , Mengxiao Shi , Rui Liu , Jingjing Su , Pengchao Sun , Yongxing Zhao . PtCu nanozyme integrating single atom Pt and Pt subnanoclusters for the sustained treatment of cutaneous melanoma. Chinese Chemical Letters, 2025, 36(12): 111164-. doi: 10.1016/j.cclet.2025.111164
Ke Gong , Jinghan Liao , Jiangtao Lin , Quan Wang , Zhihua Wu , Liting Wang , Jiali Zhang , Yi Dong , Yourong Duan , Jianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
Yusong Bi , Rongzhen Zhang , Kaikai Niu , Shengsheng Yu , Hui Liu , Lingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Ying Wang , Hong Yang , Caixia Zhu , Qing Hong , Xuwen Cao , Kaiyuan Wang , Yuan Xu , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153
Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096
Chao Zhang , Ai-Feng Liu , Shihui Li , Fang-Yuan Chen , Jun-Tao Zhang , Fang-Xing Zeng , Hui-Chuan Feng , Ping Wang , Wen-Chao Geng , Chuan-Rui Ma , Dong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752
Ling-Ling Wu , Xiangchuan Meng , Qingyang Zhang , Xiaowan Han , Feiya Yang , Qinghua Wang , Hai-Yu Hu , Nianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663
Liangliang Jia , Ye Hong , Xinyu He , Ying Zhou , Liujiao Ren , Hongjun Du , Bin Zhao , Bin Qin , Zhe Yang , Di Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957
Fa Wang , Yu Chen , Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024
Xueying Shi , Xiaoxuan Zhou , Bing Xiao , Hongxia Xu , Wei Zhang , Hongjie Hu , Shiqun Shao , Zhuxian Zhou , Youqing Shen , Xiaodan Xu , Jianbin Tang . A β-lapachone-loaded iron-polyphenol nanocomplex enhances chemodynamic therapy through cascade amplification of ROS in tumor. Chinese Chemical Letters, 2025, 36(5): 110178-. doi: 10.1016/j.cclet.2024.110178