Tuning the crystallinity of MnO2 oxidant to achieve highly efficient pollutant degradation
-
* Corresponding author.
E-mail address: qianzhang@whut.edu.cn (Q. Zhang).
Citation:
Min Zhong, Meng Li, Zixi Fan, Wansong Huang, Huiru Hao, Zhixuan Xia, Qian Zhang, Haojin Peng, Yibo Zhang. Tuning the crystallinity of MnO2 oxidant to achieve highly efficient pollutant degradation[J]. Chinese Chemical Letters,
;2023, 34(1): 107189.
doi:
10.1016/j.cclet.2022.01.082
S.G. Ma, X. Ye, X. Jiang, et al., J. Alloy. Compd. 852 (2021) 157007
doi: 10.1016/j.jallcom.2020.157007
Q. Feng, H. Kanoh, K. Ooi, J. Mater. Chem. 9 (1999) 319–333
doi: 10.1039/a805369c
Y. Yuan, C. Liu, B.W. Byles, et al., Joule 3 (2019) 471–484
doi: 10.1016/j.joule.2018.10.026
J. Shin, J.K. Seo, R. Yaylian, et al., Int. Mater. Rev. 65 (2020) 356–387
doi: 10.1080/09506608.2019.1653520
M. Musil, B. Choi, A. Tsutsumi, et al., J. Electrochem. Soc. 162 (2015) 2058–2065
doi: 10.1149/2.0201510jes
P.M. Shafi, C. Johnson, A.C. Bose, AIP Conf. Proc. 1942 (2018) 050069
doi: 10.1063/1.5028700
Q.Q. Li, X.C. Huang, G.J. Su, et al., Environ. Sci. Technol. 52 (2018) 13351–13360
doi: 10.1021/acs.est.8b03789
S.N. Guan, W.Z. Li, J.R. Ma, et al., J. Ind. Eng. Chem. 66 (2018) 126–140
doi: 10.1016/j.jiec.2018.05.023
T.D. Xiao, E.R. Strutt, M. Benaissa, et al., Nanostruct. Mater. 10 (1998) 1051–1061
doi: 10.1016/S0965-9773(98)00137-8
G.X. Zhu, J.G. Zhu, W.L. Li, et al., Environ. Sci. Technol. 52 (2018) 8684–8692
doi: 10.1021/acs.est.8b01594
M.D. Ma, Q. Zhu, Z.Y. Jiang, et al., J. Colloid Interface Sci. 598 (2021) 238–249
doi: 10.1016/j.jcis.2021.04.043
Y. Li, D.D. Li, S.S. Fan, et al., Catal. Sci. Technol. 10 (2020) 864–875
doi: 10.1039/c9cy01849b
X. Wang, Y.D. Li, Chem. Eur. J. 9 (2003) 300–306
doi: 10.1002/chem.200390024
Y.L. Cao, H.X. Yang, X.P. Ai, et al., J. Electroanal. Chem. 557 (2003) 127–134
doi: 10.1016/S0022-0728(03)00355-3
Y.F. Chen, C.H. Xue, J. Wang, et al., Chin. Chem. Lett. 2021. 10.1016/j. cclet. 2021.09.088
doi: 10.1016/j.cclet.2021.09.088
J. Li, W.L. Li, Y. Rao, et al., Chin. Chem. Lett. 32 (2021) 150–153
doi: 10.1016/j.cclet.2020.10.043
Z.Q. Wang, H.Z. Jia, T. Zheng, et al., Appl. Catal. B Environ. 272 (2020) 119030
doi: 10.1016/j.apcatb.2020.119030
W.H. Yang, Z.A. Su, Z.H. Xu, et al., Appl. Catal. B Environ. 260 (2020) 118150
doi: 10.1016/j.apcatb.2019.118150
J. Liu, V. Makwana, J. Cai, et al., J. Phys. Chem. B107 (2003) 9185–9194
doi: 10.1021/jp0300593
Y. Dai, J.H. Li, Y. Peng, et al., Acta Phys. Chim. Sin. 28 (2012) 1771–1776
doi: 10.3866/PKU.WHXB201204175
X.K. Huang, D.P. Lv, Q.S. Zhang, et al., Electrochim. Acta 55 (2010) 4915–4920
doi: 10.1016/j.electacta.2010.03.090
R.L. Lehman, J.S. Gentry, N.G. Glumac, Thermochim. Acta 316 (1998) 1–9
doi: 10.1016/S0040-6031(98)00289-5
C. Dong, H. Wang, Y.W. Ren, et al., J. Environ. Sci. 104 (2021) 102–112
doi: 10.1016/j.jes.2020.11.003
S.H. Wang, Q. Liu, Z.Q. Zhao, et al., Eng. Chem. Res. 59 (2020) 6556–6564
doi: 10.1021/acs.iecr.0c00373
Z.Q. Chen, X.C. Zhong, Y.M. Xie, et al., J. Alloy. Compd. 884 (2021) 160980
doi: 10.1016/j.jallcom.2021.160980
J. Lee, N. Son, J. Shin, et al., J. Alloy. Compd. 869 (2021) 159265
doi: 10.1016/j.jallcom.2021.159265
X.H. Zheng, J.M. Cai, Y.N. Cao, et al., Appl. Catal. B Environ. 297 (2021) 120402
doi: 10.1016/j.apcatb.2021.120402
G.X. Zhang, Q.L. Wei, X.H. Yang, et al., Appl. Catal. B Environ. 206 (2017) 115–126
doi: 10.1016/j.apcatb.2017.01.001
B. Lan, X.Y. Zheng, G. Cheng, et al., Electrochim. Acta 283 (2018) 459–466
doi: 10.1016/j.electacta.2018.06.195
S. Islam, M.H. Alfaruqi, D.Y. Putro, et al., J. Mater. Chem. A 7 (2019) 20335–20347
doi: 10.1039/c9ta05767f
W.Q. Huang, G.W. Wu, H. Xiao, et al., Environ. Pollut. 256 (2020) 113408
doi: 10.1016/j.envpol.2019.113408
L. Gan, X.Y. Fang, L.J. Xu, et al., Mater. Des. 203 (2021) 109596
doi: 10.1016/j.matdes.2021.109596
X.J. Fan, L.G. Deng, K. Li, et al., Colloid Interface Sci. Commun. 44 (2021) 100485
doi: 10.1016/j.colcom.2021.100485
Y. He, L.J. Wang, Z. Chen, et al., Sci. Total Environ. 785 (2021) 147328
doi: 10.1016/j.scitotenv.2021.147328
W.J. Zong, Z.M. Guo, M.H. Wu, et al., Sci. Total Environ. 761 (2021) 143201
doi: 10.1016/j.scitotenv.2020.143201
D. Ouyang, Y. Chen, J.C. Yan, et al., Chem. Eng. J. 370 (2019) 614–624
doi: 10.1016/j.cej.2019.03.235
O. Fónagy, E. Szabó-Bárdos, O. Horváth, J. Photochem. Photobiol. A Chem. 407 (2021) 113057
doi: 10.1016/j.jphotochem.2020.113057
W.X. Hou, S.H. Wang, X.R. Bi, et al., Chin. Chem. Lett. 32 (2021) 2513–2518
doi: 10.1016/j.cclet.2021.01.023
S.P. Mo, Q. Zhang, J.Q. Li, et al., Appl. Catal. B Environ. 264 (2020) 118464
doi: 10.1016/j.apcatb.2019.118464
S.S. Zhu, X.J. Li, J. Kang, X.G. Duan, S.B. Wang, Environ. Sci. Technol. 53 (2019) 307–315
doi: 10.1021/acs.est.8b04669
Y. Yang, J. Huang, S.W. Wang, et al., Appl. Catal. B Environ. 142-143 (2013) 568–578
doi: 10.1016/j.apcatb.2013.05.048
R.J. Yang, Z.J. Guo, L.X. Cai, et al., Small (2021) 2103052
doi: 10.1002/smll.202103052
Y. Chen, X. Zhang, C. Xu, H. Xu, Electrochim. Acta 309 (2019) 424–431
doi: 10.1016/j.electacta.2019.04.072
N.N. Xu, J.W. Liu, J.L. Qiao, et al., J. Power Sources 455 (2020) 227992
doi: 10.1016/j.jpowsour.2020.227992
D.N. Rao, B. Sun, J.L. Qiao, X.H. Guan, Prog. Chem. 29 (2017) 1142
J.A. Dawson, H. Chen, I. Tanaka, ACS Appl. Mater. Interfaces 7 (2015) 1726–1734
doi: 10.1021/am507273c
Z.H. Diao, W.X. Zhang, J.Y. Liang, et al., Chem. Eng. J. 409 (2021) 127684
doi: 10.1016/j.cej.2020.127684
T.C. Zang, H. Wang, Y.H. Liu, et al., Chemosphere 261 (2020) 127616
doi: 10.1016/j.chemosphere.2020.127616
Y.D. Liu, X.J. Zhang, J. Bian, et al., Appl. Catal. B Environ. 254 (2019) 260–269
doi: 10.3390/e21030260
J. Jia, P. Zhang, L. Chen, Catal. Sci. Technol. 6 (2016) 5841–5847
doi: 10.1039/C6CY00301J
Z.Q. Wang, H.Z. Jia, Z.W. Liu, et al., J. Hazard. Mater. 413 (2021) 125285
doi: 10.1016/j.jhazmat.2021.125285
C. He, Y.C. Wang, Z.Y. Li, et al., Environ. Sci. Technol. 54 (2020) 12771–12783
doi: 10.1021/acs.est.0c05235
S.P. Rong, P.Y. Zhang, F. Liu, Y.J. Yang, ACS Catal. 8 (2018) 3435–3446
doi: 10.1021/acscatal.8b00456
G.F. Xiao, T.T. Xu, M. Faheem, et al., Int. J. Environ. Res. Public Health 18 (2021) 3344
doi: 10.3390/ijerph18073344
M.Q. Liu, Q.H. Zhao, H. Liu, et al., Nano Energy 64 (2019) 103942
doi: 10.1016/j.nanoen.2019.103942
S. Devaraj, N. Munichandraiah, J. Phys. Chem. C 112 (2008) 4406–4417
doi: 10.1021/jp7108785
J.Z. Huang, S.F. Zhong, Y.F. Dai, C.C. Liu, H.C. Zhang, Environ. Sci. Technol. 52 (2018) 11309–11318
doi: 10.1021/acs.est.8b03383
D.M. Robinson, Y.B. Go, M. Mui, et al., J. Am. Chem. Soc. 135 (9) 20133494–3501
doi: 10.1021/ja310286h
L. Ukrainczyk, M.B. McBride, Clays Clay Miner. 40 (1992) 157–166
doi: 10.1346/CCMN.1992.0400204
X. Shi, H. Zheng, A.M. Kannan, K. Pérez-Salcedo, B. Escobar, Inorg. Chem. 58 (2019) 5335–5344
doi: 10.1021/acs.inorgchem.9b00492
M.X. Lin, F.Q. Shao, S.T. Weng, et al., Electrochim. Acta378 (2021) 138147
doi: 10.1016/j.electacta.2021.138147
M. Rittiruam, S. Somdee, P. Buapin, N. Aumnongpho, N. Kerdprasit, et al., J. Alloy. Compd. 869 (2021) 159280
doi: 10.1016/j.jallcom.2021.159280
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Yunxia Liu , Guandong Wu , Lin Li , Yiming Niu , Bingsen Zhang , Botao Qiao , Junhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
Jianjun Fang , Kunchen Xie , Yongli Song , Kangyi Zhang , Fei Xu , Xiaoze Shi , Ming Ren , Minzhi Zhan , Hai Lin , Luyi Yang , Shunning Li , Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863