Phase engineering two-dimensional nanostructures for electrocatalytic hydrogen evolution reaction
-
* Corresponding author.
E-mail address: iamzmluo@njupt.edu.cn (Z. Luo).
Citation:
Zhongshui Li, Yang Yue, Junchen Peng, Zhimin Luo. Phase engineering two-dimensional nanostructures for electrocatalytic hydrogen evolution reaction[J]. Chinese Chemical Letters,
;2023, 34(1): 107119.
doi:
10.1016/j.cclet.2022.01.012
N. Cheng, S. Stambula, D. Wang, et al., Nat. Commun. 7 (2016) 13638.
doi: 10.1038/ncomms13638
D. Zhang, H. Mou, F. Lu, C. Song, D. WAng, Appl. Catal. B 254 (2019) 471–478.
doi: 10.1016/j.apcatb.2019.05.029
D.W. Boukhvalov, Y.W. Son, R.S. Ruoff, ACS Catal. 4 (2014) 2016–2021.
doi: 10.1021/cs5002288
X. Zou, Z. Li, Y. Xie, H. Wu, S. Lin, Int. J. Hydrogen Energy 45 (2020) 30647–30658.
doi: 10.1016/j.ijhydene.2020.09.165
Z. Li, X. Huang, X. Zhang, L. Zhang, S. Lin, J. Mater. Chem. 22 (2012) 23602–23607.
doi: 10.1039/c2jm35239g
Z. Li, L. Zhang, X. Huang, L. Ye, S. Lin, Electrochim. Acta 121 (2014) 215–222.
doi: 10.1016/j.electacta.2013.12.174
Z. Li, S. Lin, Z. Chen, Y. Shi, X. Huang, J. Colloid Interface Sci. 368 (2012) 413–419.
doi: 10.1016/j.jcis.2011.10.080
S. Ye, F. Luo, Q. Zhang, et al., Energy Environ. Sci. 12 (2019) 1000–1007.
doi: 10.1039/c8ee02888e
Z. Gao, M. Li, J. Wang, et al., Carbon 139 (2018) 369–377.
doi: 10.1016/j.carbon.2018.07.006
M.J. Muñoz-Batista, D. Motta Meira, G. Colón, A. Kubacka, M. Fernández-García, Angew. Chem. Int. Ed. 57 (2018) 1199–1203.
doi: 10.1002/anie.201709552
X. Wang, L. Zhuang, Y. Jia, et al., Angew. Chem. Int. Ed. 57 (2018) 16421–16425.
doi: 10.1002/anie.201810199
W. Wu, C. Niu, C. Wei, et al., Angew. Chem. Int. Ed. 58 (2019) 2029–2033.
doi: 10.1002/anie.201812475
P. Wang, X. Zhang, J. Zhang, et al., Nat. Commun. 8 (2017) 14580.
doi: 10.1038/ncomms14580
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 28 (2016) 1917–1933.
doi: 10.1002/adma.201503270
L. Lin, P. Sherrell, Y. Liu, et al., Adv. Energy Mater. 10 (2020) 1903870.
doi: 10.1002/aenm.201903870
L. Najafi, S. Bellani, R. Oropesa-Nuñez, et al., Adv. Energy Mater. 8 (2018) 1703212.
doi: 10.1002/aenm.201703212
C.H. Choi, M. Kim, H.C. Kwon, et al., Nat. Commun. 7 (2016) 10922.
doi: 10.1038/ncomms10922
J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed. 54 (2015) 2100–2104.
doi: 10.1002/anie.201409524
Y.C. Chen, A.Y. Lu, P. Lu, et al., Adv. Mater. 29 (2017) 1703863.
doi: 10.1002/adma.201703863
S. Park, C. Kim, S.O. Park, et al., Adv. Mater. 32 (2020) 2001889.
doi: 10.1002/adma.202001889
S.S. Nishat, M.T. Islam, S. Ahmed, A. Kabir, Mater. Today, Commun. 25 (2020) 101602.
doi: 10.1016/j.mtcomm.2020.101602
Y. Yan, P. Wang, J. Lin, J. Cao, J. Qi, J. Energy Chem. 58 (2021) 446–462.
doi: 10.1016/j.jechem.2020.10.010
Y. Jiao, Y. Zheng, K. Davey, S. Qiao, Nat. Energy 1 (2016) 16130.
doi: 10.1038/nenergy.2016.130
L. Chang, Z. Sun, Y.H. Hu, Electrochem. Energ. Rev. 4 (2021) 194–218.
doi: 10.1007/s41918-020-00087-y
C. Chang, W. Chen, Y. Chen, et al., Acta Phys. Chim. Sin. 37 (2021) 2108017.
doi: 10.3866/pku.whxb202108017
H. Li, X. Zhou, W. Zhai, et al., Adv. Energy Mater. 10 (2020) 2002019.
doi: 10.1002/aenm.202002019
J. Liu, Q. Ma, Z. Huang, G. Liu, H. Zhang, Adv. Mater. 31 (2019) 1800696.
doi: 10.1002/adma.201800696
Y. Chen, Z. Fan, Z. Zhang, et al., Chem. Rev. 118 (2018) 6409–6455.
doi: 10.1021/acs.chemrev.7b00727
C. Tan, X. Cao, X.J. Wu, et al., Chem. Rev. 117 (2017) 6225–6331.
doi: 10.1021/acs.chemrev.6b00558
J. Xu, J. Zhang, W. Zhang, C.S. Lee, Adv. Energy Mater. 7 (2017) 1700571.
doi: 10.1002/aenm.201700571
T.A. Shifa, F. Wang, Y. Liu, J. He, Adv. Mater. 31 (2019) 1804828.
doi: 10.1002/adma.201804828
R. Tong, K.W. Ng, X. Wang, et al., J. Mater. Chem. A 8 (2020) 23202–23230.
doi: 10.1039/d0ta08045d
Z. Liu, X. Zhang, Y. Gong, et al., Nano Res. 12 (2019) 1301–1305.
doi: 10.1007/s12274-018-2212-8
J. Ping, Y. Wang, Q. Lu, et al., Adv. Mater. 28 (2016) 7640.
doi: 10.1002/adma.201601019
M. Zhao, Y. Huang, Y. Peng, et al., Chem. Soc. Rev. 47 (2018) 6267–6295.
doi: 10.1039/C8CS00268A
L. Niu, J.N. Coleman, H. Zhang, et al., Small 12 (2016) 272–293.
doi: 10.1002/smll.201502207
J. Jiang, N. Li, J. Zou, et al., Chem. Soc. Rev. 48 (2019) 4639–4654.
doi: 10.1039/c9cs00348g
G. Zhang, H. Liu, J. Qu, J. Li, Energy Environ. Sci. 9 (2016) 1190–1209.
doi: 10.1039/C5EE03761A
Z. Li, S. Xu, Y. Shi, et al., Chem. Eng. J. 414 (2021) 128814.
doi: 10.1016/j.cej.2021.128814
Z. Li, S. Xu, Y. Xie, Y. Wang, S. Lin, Electrochim. Acta 264 (2018) 53–60.
doi: 10.3847/1538-4357/aade8e
T. Wu, H. Zhang, Angew. Chem. Int. Ed. 54 (2015) 4432–4434.
doi: 10.1002/anie.201411335
Z. Lai, A. Chaturvedi, Z. Shi, et al., Small 17 (2021) 2006866.
doi: 10.1002/smll.202006866
L. Zhao, B. Dong, S. Li, et al., ACS Nano 11 (2017) 5800–5807.
doi: 10.1021/acsnano.7b01409
W. Zhai, T. Xiong, Z. He, et al., Adv. Mater. 33 (2021) 2006661.
doi: 10.1002/adma.202006661
Q. Song, J. Wang, Q. Sun, et al., Chem. Commun. 56 (2020) 10285–10288.
doi: 10.1039/d0cc03773g
H.F. Shen, Z.W. Shao, Q.F. Zhao, et al., J. Colloid Interface Sci. 573 (2020) 115–122.
doi: 10.1016/j.jcis.2020.03.111
K. Sun, Y. Liu, Y. Pan, et al., Nano Res. 11 (2018) 4368–4379.
doi: 10.1007/s12274-018-2026-8
Q. Zhou, G. Zhao, K. Rui, et al., Nanoscale 11 (2019) 717–724.
doi: 10.1039/c8nr08028c
X. Zhang, H. Cheng, H. Zhang, Adv. Mater. 29 (2017) 1701704.
doi: 10.1002/adma.201701704
Z. Fan, M. Bosman, X. Huang, et al., Nat. Commun. 6 (2015) 7684.
doi: 10.1038/ncomms8684
Z. Fan, X. Huang, Y. Han, et al., Nat. Commun. 6 (2015) 6571.
doi: 10.1038/ncomms7571
X. Huang, S. Li, Y. Huang, et al., Nat. Commun. 2 (2011) 292.
doi: 10.1038/ncomms1291
Y. Ge, Z. Shi, C. Tan, et al., Chem 6 (2020) 1237–1253.
doi: 10.1016/j.chempr.2020.04.004
H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Nanoscale 12 (2020) 1247–1268.
doi: 10.1039/c9nr08313h
Y. Chen, Z. Lai, X. Zhang, et al., Nat. Rev. Chem. 4 (2020) 243–256.
doi: 10.1038/s41570-020-0173-4
H. Jin, Q. Gu, B. Chen, et al., Chem 6 (2020) 2382–2394.
doi: 10.1016/j.chempr.2020.06.037
Q. Lu, A. Wang, H. Cheng, et al., Small 14 (2018) 1801090.
doi: 10.1002/smll.201801090
Y. Zheng, P. Wu, M. Gao, et al., Nat. Commun. 9 (2018) 2533.
doi: 10.1038/s41467-018-04954-7
Z. Lei, J. Zhan, L. Tang, Y. Zhang, Y. Wang, Adv. Energy Mater. 8 (2018) 1703482.
doi: 10.1002/aenm.201703482
J. Shi, X. Wang, S. Zhang, et al., Nat. Commun. 8 (2017) 958.
doi: 10.1038/s41467-017-01089-z
J. Ping, Z. Fan, M. Sindoro, Y. Ying, H. Zhang, Adv. Funct. Mater. 27 (2017) 1605817.
doi: 10.1002/adfm.201605817
H. Huang, J. Zha, S. Li, C. Tan, Chin. Chem. Lett. 33 (2022) 163–176.
doi: 10.1016/j.cclet.2021.06.004
T. Rao, H. Wang, Y.J. Zeng, et al., Adv. Sci. 8 (2021) 2002284.
doi: 10.1002/advs.202002284
J. Yi, X. She, Y. Song, et al., Chem. Eng. J. 335 (2018) 282–289.
doi: 10.1016/j.cej.2017.10.125
Q. He, Z. Wang, L. Meng, Q. Chen, G. Yong, Chem. J. Chin. Univ. 42 (2021) 523–538.
W. Jia, X. Zhou, Y. Huang, et al., ChemCatChem 11 (2019) 707–714.
X. Zhang, H. Li, H. Yang, et al., ChemElectroChem 7 (2020) 3347–3352.
doi: 10.1002/celc.202000745
X. Zheng, G. Zhang, X. Xu, et al., Appl. Surf. Sci. 496 (2019) 143694.
doi: 10.1016/j.apsusc.2019.143694
L. Zhang, K. Wei, J. Yin, et al., Langmuir 36 (2020) 14342–14351.
doi: 10.1021/acs.langmuir.0c02691
Y. Xu, R. Wang, J. Wang, et al., Chem. Eng. J. 417 (2021) 129233.
doi: 10.1016/j.cej.2021.129233
L. Zhang, K. Wei, J. Ma, et al., Appl. Surf. Sci. 566 (2021) 150754.
doi: 10.1016/j.apsusc.2021.150754
Z. Zhou, X. Wang, H. Zhang, et al., Small 17 (2021) 2007486.
doi: 10.1002/smll.202007486
Y. Li, K.A.N. Duerloo, K. Wauson, E.J. Reed, Nat. Commun. 7 (2016) 10671.
doi: 10.1038/ncomms10671
S.K. Kim, W. Song, S. Ji, et al., Appl. Surf. Sci. 425 (2017) 241–245.
doi: 10.4082/kjfm.2017.38.5.241
D. Han, Z. Luo, Y. Li, et al., Appl. Surf. Sci. 529 (2020) 147117.
doi: 10.1016/j.apsusc.2020.147117
J. Ekspong, E. Gracia Espino, Adv. Theory Simul. 3 (2020) 1900213.
doi: 10.1002/adts.201900213
W. Chen, J. Gu, Y. Du, et al., Adv. Funct. Mater. 30 (2020) 2000551.
doi: 10.1002/adfm.202000551
X. Xu, R. Zhao, W. Ai, et al., Adv. Mater. 30 (2018) 1800658.
doi: 10.1002/adma.201800658
B. Chen, H. Bi, Q. Ma, et al., Sci. China Mater. 60 (2017) 1102–1108.
doi: 10.1007/s40843-017-9150-7
A.G. del Águila, S. Liu, T. Thu Ha Do, et al., ACS Nano 13 (2019) 13006–13014.
doi: 10.1021/acsnano.9b05656
U. Krishnan, M. Kaur, K. Singh, M. Kumar, A. Kumar, Superlattices Microstruct. 128 (2019) 274–297.
doi: 10.1016/j.spmi.2019.02.005
Z. Zhou, B. Li, C. Shen, et al., Small 16 (2020) 2004173.
doi: 10.1002/smll.202004173
M. Deng, M. Li, H.G. Park, ACS Appl. Energy Mater. 1 (2018) 5993–5998.
doi: 10.1021/acsaem.8b01049
H. Mao, Y. Fu, H. Yang, et al., ACS Appl. Mater. Interfaces 12 (2020) 25189–25199.
doi: 10.1021/acsami.0c05204
M.A. Lukowski, A.S. Daniel, F. Meng, et al., J. Am. Chem. Soc. 135 (2013) 10274–10277.
doi: 10.1021/ja404523s
Y. Yu, G.H. Nam, Q. He, et al., Nat. Chem. 10 (2018) 638–643.
doi: 10.1038/s41557-018-0035-6
D. Wang, X. Zhang, S. Bao, et al., J. Mater. Chem. A 5 (2017) 2681–2688.
doi: 10.1039/C6TA09409K
Y. He, P. Tang, Z. Hu, et al., Nat. Commun. 11 (2020) 57.
doi: 10.1038/s41467-019-13631-2
C. Tan, Z. Luo, A. Chaturvedi, et al., Adv. Mater. 30 (2018) 1705509.
doi: 10.1002/adma.201705509
Q. Fu, J. Han, X. Wang, et al., Adv. Mater. 33 (2021) 1907818.
doi: 10.1002/adma.201907818
L. Xie, L. Wang, W. Zhao, et al., Nat. Commun. 12 (2021) 5070.
doi: 10.1038/s41467-021-25381-1
Z. Lai, A. Chaturvedi, Y. Wang, et al., J. Am. Chem. Soc. 140 (2018) 8563–8568.
doi: 10.1021/jacs.8b04513
J. Li, M. Hong, L. Sun, et al., ACS Appl. Mater. Interfaces 10 (2018) 458–467.
doi: 10.1021/acsami.7b13387
G. Shao, X.X. Xue, X. Zhou, et al., ACS Nano 13 (2019) 8265–8274.
doi: 10.1021/acsnano.9b03648
D. Vikraman, S. Hussain, K. Karuppasamy, et al., Appl. Catal. B 264 (2020) 118531.
doi: 10.1016/j.apcatb.2019.118531
Rahul, H. Singh, N.P. Lalla, U. Deshpande, S.K. Arora, Mater. Today Proc. 45 (2021) 4787–4791.
doi: 10.1016/j.matpr.2021.01.247
L. Jia, C. Li, Y. Zhao, et al., Nanoscale 11 (2019) 23318–23329.
doi: 10.1039/c9nr08986a
J. Chen, X.J. Wu, Q. Lu, et al., Small 17 (2021) 2006135.
doi: 10.1002/smll.202006135
Y. Han, H. Li, M. Zhang, et al., Appl. Surf. Sci. 495 (2019) 143606.
doi: 10.1016/j.apsusc.2019.143606
H. Zhou, F. Yu, Y. Huang, et al., Nat. Commun. 7 (2016) 12765.
doi: 10.1038/ncomms12765
Y. Zhang, L. Xue, C. Liang, et al., Appl. Surf. Sci. 561 (2021) 150079.
doi: 10.1016/j.apsusc.2021.150079
J. Kibsgaard, T.F. Jaramillo, Angew. Chem. Int. Ed. 53 (2014) 14433–14437.
doi: 10.1002/anie.201408222
G. Hu, J. Xiang, J. Li, et al., J. Catal. 371 (2019) 126–134.
doi: 10.1016/j.jcat.2019.01.039
D. Mukherjee, P.M. Austeria, S. Sampath, ACS Energy Lett. 1 (2016) 367–372.
doi: 10.1021/acsenergylett.6b00184
X. Zhang, Z. Luo, P. Yu, et al., Nat. Catal. 1 (2018) 460–468.
doi: 10.1038/s41929-018-0072-y
M. Zhu, H. Kou, K. Wang, et al., Mater. Horiz. 7 (2020) 3131–3160.
doi: 10.1039/d0mh00802h
B. Wu, R. Kempt, E. Kovalska, et al., ACS Appl. Nano Mater. 4 (2021) 441–448.
doi: 10.1021/acsanm.0c02775
Z. Yu, J. Peng, Y. Liu, et al., J. Mater. Chem. A 7 (2019) 13928–13934.
doi: 10.1039/c9ta03256h
M. Yao, H. Hu, B. Sun, et al., Small 15 (2019) 1905201.
doi: 10.1002/smll.201905201
Y. Xue, M. Sun, Int. J. Hydrogen Energy 44 (2019) 16378–16386.
doi: 10.1016/j.ijhydene.2019.04.258
D. Rakov, Y. Li, S. Niu, P. Xu, J. Alloys Compd. 769 (2018) 532–538.
doi: 10.1016/j.jallcom.2018.08.041
S. Wang, B. Xiao, S. Shen, et al., Nanoscale 12 (2020) 14459–14464.
doi: 10.1039/d0nr03819a
B. Song, K. Li, Y. Yin, et al., ACS Catal. 7 (2017) 8549–8557.
doi: 10.1021/acscatal.7b02575
C. Tang, D. He, N. Zhang, et al., Energy Environ. Mater. 5 (2022) 899–905.
doi: 10.1002/eem2.12205
D.J. Li, J. Kang, H.J. Lee, et al., Adv. Energy Mater. 8 (2018) 1702806.
doi: 10.1002/aenm.201702806
Y. Li, S. Niu, D. Rakov, et al., Nanoscale 10 (2018) 7291–7297.
doi: 10.1039/C8NR01811A
Q. Liang, L. Zhong, C. Du, et al., Adv. Funct. Mater. 28 (2018) 1805075.
doi: 10.1002/adfm.201805075
C.F. Du, K.N. Dinh, Q.H. Liang, et al., Adv. Energy Mater. 8 (2018) 1801127.
doi: 10.1002/aenm.201801127
S. Lu, J. Liang, H. Long, et al., Acc. Chem. Res. 53 (2020) 2106–2118.
doi: 10.1021/acs.accounts.0c00487
Y. Chen, Z. Fan, J. Wang, et al., J. Am. Chem. Soc. 142 (2020) 12760–12766.
doi: 10.1021/jacs.0c04981
Z. Fan, Z. Luo, Y. Chen, et al., Small 12 (2016) 3908–3913.
doi: 10.1002/smll.201601787
Y. Chen, Z. Fan, Z. Luo, et al., Adv. Mater. 29 (2017) 1701331.
doi: 10.1002/adma.201701331
Z. Fan, M. Bosman, Z. Huang, et al., Nat. Commun. 11 (2020) 3293.
doi: 10.1038/s41467-020-17068-w
Z. Fan, Y. Zhu, X. Huang, et al., Angew. Chem. Int. Ed. 54 (2015) 5672–5676.
doi: 10.1002/anie.201500993
J. Liu, W. Niu, G. Liu, et al., J. Am. Chem. Soc. 143 (2021) 4387–4396.
doi: 10.1021/jacs.1c00612
W. Niu, J. Liu, J. Huang, et al., Nat. Commun. 10 (2019) 2881.
doi: 10.1038/s41467-019-10764-2
C. Tan, H. Zhang, Nat. Commun. 6 (2015) 7873.
doi: 10.1038/ncomms8873
Z. Fan, Z. Luo, X. Huang, et al., J. Am. Chem. Soc. 138 (2016) 1414–1419.
doi: 10.1021/jacs.5b12715
Q. Lu, A.L. Wang, Y. Gong, et al., Nat. Chem. 10 (2018) 456–461.
doi: 10.1038/s41557-018-0012-0
Y. Ge, Z. Huang, C. Ling, et al., J. Am. Chem. Soc. 142 (2020) 18971–18980.
doi: 10.1021/jacs.0c09461
N. Yang, Z. Zhang, B. Chen, et al., Adv. Mater. 29 (2017) 1700769.
doi: 10.1002/adma.201700769
Z. Zhang, Z. Luo, B. Chen, et al., Adv. Mater. 28 (2016) 8712–8717.
doi: 10.1002/adma.201603075
J. Wang, J. Zhang, G. Liu, et al., Nano Res. 13 (2020) 1970–1975.
doi: 10.1007/s12274-020-2849-y
D. Xu, H. Lv, H. Jin, et al., J. Phys. Chem. Lett. 10 (2019) 663–671.
doi: 10.1021/acs.jpclett.8b03861
Z. Cao, Q. Chen, J. Zhang, et al., Nat. Commun. 8 (2017) 15131.
doi: 10.1038/ncomms15131
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290