A review on treatment of disinfection byproduct precursors by biological activated carbon process
-
* Corresponding author.
E-mail address: jiefu@hust.edu.cn (J. Fu).
Citation:
Jie Fu, Ching-Hua Huang, Chenyuan Dang, Qilin Wang. A review on treatment of disinfection byproduct precursors by biological activated carbon process[J]. Chinese Chemical Letters,
;2022, 33(10): 4495-4504.
doi:
10.1016/j.cclet.2021.12.044
S.D. Richardson, C. Postigo, Drinking water disinfection by-products, in: D. Barcelo (Ed.), Emerging Organic Contaminants and Human Health, Springer, 2012, pp. 93-137.
S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny, D.M. DeMarini, Mutat. Res. Rev. Mutat. 636 (2007) 178-242.
doi: 10.1016/j.mrrev.2007.09.001
J. Kim, C.H. Huang, ACS EST Water 1 (2020) 15-23.
doi: 10.3390/beverages6010015
G.A. Boorman, Environ. Health Perspect. 107 (1999) 207-217.
doi: 10.1289/ehp.99107s1207
S. Krasner, B. Coffey, P. Hacker, et al., International working group on biodegradable organic matter in drinking water, in: Proceedings of the Fourth International BOM Conference, Waterloo, 1996.
Q.Y. Wu, L.L. Yang, Y. Du, et al., Environ. Sci. Technol. 55 (2021) 10597-10607.
doi: 10.1021/acs.est.1c02171
J. Fawell, D. Robinson, R. Bull, et al., Environ. Health Perspect. 105 (1997) 108.
doi: 10.1289/ehp.97105108
USEPA, Fed. Regist. 44 (1979) 68624-68707.
USEPA, Fed. Regist. 63 (1998) 69390.
WHOGuidelines For Drinking Water Quality, 3rd ed., World Health Organization, 2004.
EU, European Union (Drinking Water) Regulations, Government of Ireland, 2014, p. 2014.
Q.Y. Wu, Y.T. Zhou, W. Li, et al., Water Res. 162 (2019) 43-52.
doi: 10.1016/j.watres.2019.06.054
USEPA Integrated Risk Information System (IRIS), United States Environmental Protection Agency, 2006.
M.Q. Wang, Q. Zhou, M.C. Zhang, et al., Chin. Chem. Lett. 24 (2013) 601-604.
doi: 10.1016/j.cclet.2013.04.021
S. Goel, R.M. Hozalski, E.J. Bouwer, J. Am. Water Works Assoc. 87 (1995) 90-105.
doi: 10.1002/j.1551-8833.1995.tb06304.x
J. Fu, W.N. Lee, C. Coleman, et al., Chemosphere 166 (2017) 311-322.
doi: 10.1016/j.chemosphere.2016.09.101
T. Bond, E.H. Goslan, S.A. Parsons, B. Jefferson, Environ. Technol. 32 (2011) 1-25.
doi: 10.1080/09593330.2010.495138
P. Jin, X. Jin, X. Wang, Y. Feng, X.C. Wang, Biological activated carbon treatment process for advanced water and wastewater treatment, in: M.D. Matovic (Ed.), Biomass Now-cultivation Utilization, IntechOpen, 2013, pp. 153-192.
S.M. Korotta-Gamage, A. Sathasivan, Chemosphere 167 (2017) 120-138.
doi: 10.1016/j.chemosphere.2016.09.097
C. Liu, C.I. Olivares, A.J. Pinto, et al., Water Res. 124 (2017) 630-653.
doi: 10.1016/j.watres.2017.07.080
F. Weissenhorn, AMK 2 (1977) 51-57.
J.D. Parkhurst, F.D. Dryden, G.N. McDermott, J. English, J. Water Pollut. Control Fed. 39 (1967) R70-R81.
T. Wang, J. He, J. Lu, et al., Chin. Chem. Lett. (2021), doi: 10.1016/j.cclet.2021.09.029.
doi: 10.1016/j.cclet.2021.09.029
W. Buchanan, F. Roddick, N. Porter, Water Res. 42 (2008) 3335-3342.
doi: 10.1016/j.watres.2008.04.014
P. Gauden, E. Szmechtig-Gauden, G. Rychlicki, et al., J. Colloid Interface Sci. 295 (2006) 327-347.
doi: 10.1016/j.jcis.2005.08.039
N. Klimenko, L. Savchina, I. Kozyatnik, V. Goncharuk, A. Samsoni-Todorov, J. Water Chem. Technol. 31 (2009) 220-226.
doi: 10.3103/S1063455X09040031
A. Andersson, P. Laurent, A. Kihn, M. Prévost, P. Servais, Water Res. 35 (2001) 2923-2934.
doi: 10.1016/S0043-1354(00)00579-0
W. He, W. Li, X. Zhang, T. Huang, H. Han, Novel Technology for Drinking Water Safety, China Architecture & Building Press, Beijing, 2006.
J. Fu, W.N. Lee, C. Coleman, et al., Water Res. 123 (2017) 224-235.
doi: 10.1016/j.watres.2017.06.073
B. Van der Bruggen, C. Vandecasteele, Environ. Pollut. 122 (2003) 435-445.
doi: 10.1016/S0269-7491(02)00308-1
A. Matilainen, M. Sillanpää, Chemosphere 80 (2010) 351-365.
doi: 10.1016/j.chemosphere.2010.04.067
R. Toor, M. Mohseni, Chemosphere 66 (2007) 2087-2095.
doi: 10.1016/j.chemosphere.2006.09.043
J. Kim, B. Kang, Water Res. 42 (2008) 145-152.
doi: 10.1016/j.watres.2007.07.040
S.A. Parsons, B. Jefferson, Introduction to Potable Water Treatment Processes, Blackwell Publishing, Hoboken, 2006.
X. Lei, M. You, F. Pan, et al., Chin. Chem. Lett. 30 (2019) 2216-2220.
doi: 10.1016/j.cclet.2019.05.039
E.M. Thurman, Organic Geochemistry of Natural Waters, Springer Science & Business Media, Dordrecht, 1985.
Y.P. Chin, G. Aiken, E. O'Loughlin, Environ. Sci. Technol. 28 (1994) 1853-1858.
doi: 10.1021/es00060a015
T.H. Boyer, P.C. Singer, G.R. Aiken, Environ. Sci. Technol. 42 (2008) 7431-7437.
doi: 10.1021/es800714d
G.A. Gagnon, S.D.J. Booth, S. Peldszus, et al., J. Am. Water Works Assoc. 89 (1997) 88-97.
doi: 10.1002/j.1551-8833.1997.tb08279.x
H.C. Hong, M.H. Wong, Y. Liang, Arch. Environ. Contam. Toxicol. 56 (2009) 638-645.
doi: 10.1007/s00244-008-9216-4
J.P. Croue, G.V. Korshin, M.M. Benjamin, Characterization of Natural Organic Matter in Drinking Water, American Water Works Association, Denver, 2000.
W. Lee, P. Westerhoff, J.P. Croué, Environ. Sci. Technol. 41 (2007) 5485-5490.
doi: 10.1021/es070411g
H.C. Hong, A. Mazumder, M.H. Wong, Y. Liang, Water Res. 42 (2008) 4941-4948.
doi: 10.1016/j.watres.2008.09.019
J.G. Jacangelo, J. DeMarco, D.M. Owen, S.J. Randtke, J. Am. Water Works Assoc. 87 (1995) 64-77.
doi: 10.1002/j.1551-8833.1995.tb06302.x
A.A. Yavich, S.J. Masten, J. Am. Water Works Assoc. 95 (2003) 159-171.
doi: 10.1002/j.1551-8833.2003.tb10342.x
J. Sketchell, H.G. Peterson, N. Christofi, Water Res. 29 (1995) 2635-2642.
doi: 10.1016/0043-1354(95)00130-D
W. Chu, N. Gao, D. Yin, Y. Deng, M.R. Templeton, Chemosphere 86 (2012) 1087-1091.
doi: 10.1016/j.chemosphere.2011.11.070
M. Arnold, J. Batista, E. Dickenson, D. Gerrity, Chemosphere 202 (2018) 228-237.
doi: 10.1016/j.chemosphere.2018.03.085
Y.H. Chuang, W.A. Mitch, Environ. Sci. Technol. 51 (2017) 2329-2338.
doi: 10.1021/acs.est.6b04693
Y.H. Chuang, A. Szczuka, F. Shabani, et al., Water Res. 152 (2019) 215-225.
doi: 10.1016/j.watres.2018.12.062
J. Zheng, T. Lin, W. Chen, Chemosphere 191 (2018) 1028-1037.
doi: 10.1016/j.chemosphere.2017.10.059
S. Zhang, T. Lin, H. Chen, et al., Sci. Total Environ. 742 (2020) 140566.
doi: 10.1016/j.scitotenv.2020.140566
S. Wang, T. Lin, W. Chen, H. Chen, Chemosphere 189 (2017) 309-318.
doi: 10.1016/j.chemosphere.2017.09.065
C. Chen, X. Zhang, L. Zhu, W. He, H. Han, J. Environ. Sci. 23 (2011) 582-586.
doi: 10.1016/S1001-0742(10)60423-8
Y. Wu, G. Zhu, X. Lu, Water 5 (2013) 1472-1486.
doi: 10.3390/w5041472
M. Yang, J. Yu, Z. Li, et al., Science 319 (2008) 158-158.
doi: 10.1126/science.319.5860.158a
S. Zhou, Y. Shao, N. Gao, et al., Water Res. 52 (2014) 199-207.
doi: 10.1016/j.watres.2014.01.002
I.C. Escobar, A.A. Randall, Water Res. 35 (2001) 4444-4454.
doi: 10.1016/S0043-1354(01)00173-7
D. Beniwal, L. Taylor-Edmonds, J. John Armour, R.C. Andrews, Chemosphere 212 (2018) 272-281.
doi: 10.1016/j.chemosphere.2018.08.015
V.N. Trang, N.P. Dan, L.D. Phuong, B.X. Thanh, Desalin. Water Treat. 52 (2013) 990-998.
doi: 10.1080/19443994.2013.826327
X. Fan, Y. Tao, D. Wei, et al., Front. Environ. Sci. Eng. 9 (2015) 112-120.
doi: 10.1007/s11783-014-0745-y
C. Chen, X. Zhang, W. He, W. Lu, H. Han, Sci. Total Environ. 382 (2007) 93-102.
doi: 10.1016/j.scitotenv.2007.04.012
G.A. de Vera, J. Keller, W. Gernjak, H. Weinberg, M.J. Farré, Water Res. 106 (2016) 550-561.
doi: 10.1016/j.watres.2016.10.022
M.K. Ramseier, A. Peter, J. Traber, U. von Gunten, Water Res. 45 (2011) 2002-2010.
doi: 10.1016/j.watres.2010.12.002
J. Gao, L.B.M. Ellis, L.P. Wackett, Nucl. Acids Res. 38 (2010) D488-D491.
doi: 10.1093/nar/gkp771
R. Criegee, Angew. Chem. 87 (1975) 765-771.
doi: 10.1002/ange.19750872104
U. von Gunten, Water Res. 37 (2003) 1443-1467.
doi: 10.1016/S0043-1354(02)00457-8
D.L. McCurry, A.N. Quay, W.A. Mitch, Environ. Sci. Technol. 50 (2016) 1209-1217.
doi: 10.1021/acs.est.5b04282
Y. Zhang, W. Chu, D. Yao, D. Yin, J. Environ. Sci. 58 (2017) 322-330.
doi: 10.1016/j.jes.2017.03.028
I. Kristiana, D. Liew, R.K. Henderson, C.A. Joll, K.L. Linge, J. Environ. Sci. 58 (2017) 102-115.
doi: 10.1016/j.jes.2017.06.028
J. Azzeh, L. Taylor-Edmonds, R.C. Andrews, Water Sci. Technol. Water Supply 15 (2015) 124-133.
doi: 10.2166/ws.2014.091
B. Singh Sidhu, L. Taylor-Edmonds, M.J. McKie, R.C. Andrews, J. Water Proc. Eng. 26 (2018) 116-123.
doi: 10.1016/j.jwpe.2018.09.007
A.D. Nikolaou, Haloforms and Related Compounds in Drinking Water, Springer, Berlin, Heidelberg, 2003.
A.D. Shah, W.A. Mitch, Environ. Sci. Technol. 46 (2012) 119-131.
doi: 10.1021/es203312s
G. Hua, D.A. Reckhow, Water Res. 46 (2012) 4208-4216.
doi: 10.1016/j.watres.2012.05.031
K. Kosaka, A. Iwatani, Y. Takeichi, et al., Chemosphere 198 (2018) 68-74.
doi: 10.1016/j.chemosphere.2018.01.093
Y. Wei, Y. Liu, L. Ma, et al., Chemosphere 92 (2013) 1529-1535.
doi: 10.1016/j.chemosphere.2013.04.019
M.J. Plewa, E.D. Wagner, P. Jazwierska, et al., Environ. Sci. Technol. 38 (2004) 62-68.
doi: 10.1021/es030477l
M.J. Plewa, M.G. Muellner, S.D. Richardson, et al., Environ. Sci. Technol. 42 (2008) 955-961.
doi: 10.1021/es071754h
W. Chu, X. Li, T. Bond, et al., Water Res. 107 (2016) 141-150.
doi: 10.1016/j.watres.2016.10.047
W.C. Huang, Y. Du, M. Liu, et al., Water Res. 165 (2019) 115024.
doi: 10.1016/j.watres.2019.115024
M.J. Plewa, E.D. Wagner, S.D. Richardson, J. Environ. Sci. 58 (2017) 208-216.
doi: 10.1016/j.jes.2017.04.014
Q.Y. Wu, Y.J. Yan, Y. Lu, et al., Front. Environ. Sci. Eng. 14 (2019) 25.
G. Ding, X. Zhang, M. Yang, Y. Pan, Water Res. 47 (2013) 2710-2718.
doi: 10.1016/j.watres.2013.02.036
Y. Pan, X. Zhang, Environ. Sci. Technol. 47 (2013) 1265-1273.
doi: 10.1021/es303729n
X. Liao, C. Wang, J. Wang, et al., J. Am. Water Works Assoc. 106 (2014) 307-318.
doi: 10.5942/jawwa.2014.106.0052
X. Liao, C. Chen, B. Yuan, J. Wang, X. Zhang, J. Am. Water Works Assoc. 109 (2017) 215-225.
doi: 10.5942/jawwa.2017.109.0057
B.K. Pramanik, K.H. Choo, S.K. Pramanik, F. Suja, V. Jegatheesan, Int. Biodeterior. Biodegrad. 104 (2015) 164-169.
doi: 10.1016/j.ibiod.2015.06.007
Y. Tan, T. Lin, F. Jiang, et al., Chemosphere 181 (2017) 569-578.
doi: 10.1016/j.chemosphere.2017.04.118
S.A. Huber, A. Balz, M. Abert, W. Pronk, Water Res. 45 (2011) 879-885.
doi: 10.1016/j.watres.2010.09.023
W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Environ. Sci. Technol. 37 (2003) 5701-5710.
doi: 10.1021/es034354c
B. Xu, N.Y. Gao, X.F. Sun, et al., Sep. Purif. Technol. 57 (2007) 348-355.
doi: 10.1016/j.seppur.2007.03.019
P.Y. Liu, J.J. Wu, C.C. Wu, Water Sci. Technol. 55 (2007) 127-131.
doi: 10.2166/wst.2007.399
K.E. Black, P.R. Bérubé, Water Res. 52 (2014) 40-50.
doi: 10.1016/j.watres.2013.12.017
C. Lauderdale, P. Chadik, M.J. Kirisits, J. Brown, J. Am. Water Works Assoc. 104 (2012) 298-309.
doi: 10.5942/jawwa.2012.104.0073
H. Flemming, J. Wingender, Water Sci. Technol. 43 (2001) 1-8.
doi: 10.2166/wst.2001.0326
Z. Wang, Z. Wu, S. Tang, Water Res. 43 (2009) 2504-2512.
doi: 10.1016/j.watres.2009.02.026
I. Sutherland, Water Sci. Technol. 43 (2001) 77-86.
doi: 10.2166/wst.2001.0345
N.M. Leys, L. Bastiaens, W. Verstraete, D. Springael, Appl. Microbiol. Biotechnol. 66 (2005) 726-736.
doi: 10.1007/s00253-004-1766-4
M.W. LeChevallier, W. Schulz, R.G. Lee, Appl. Environ. Microbiol. 57 (1991) 857-862.
doi: 10.1128/aem.57.3.857-862.1991
V.A. Nemani, M.J. McKie, L. Taylor-Edmonds, R.C. Andrews, J. Water Proc. Eng. 24 (2018) 35-41.
doi: 10.1016/j.jwpe.2018.05.009
M. Selbes, J. Brown, C. Lauderdale, T. Karanfil, J. Am. Water Works Assoc. 109 (2017) 73-84.
D.L. Pardieck, E.J. Bouwer, A.T. Stone, J. Contam. Hydrol. 9 (1992) 221-242.
doi: 10.1016/0169-7722(92)90006-Z
E. Neyens, J. Baeyens, M. Weemaes, B. De Heyder, Environ. Eng. Sci. 19 (2002) 27-35.
doi: 10.1089/109287502753590214
B.E. Christensen, H.N. Trønnes, K. Vollan, O. Smidsrød, R. Bakke, Biofouling 2 (1990) 165-175.
doi: 10.1080/08927019009378142
L. Mauclaire, A. Schurmann, M. Thullner, J. Zeyer, S. Gammeter, Aqua 53 (2004) 93-108.
doi: 10.2166/aqua.2004.0009
Zili Ma , Zeyu Li , Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
Jiayin Zhou , Depeng Liu , Longqiang Li , Min Qi , Guangqiang Yin , Tao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
Xiaoyu Zhang , Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
Yinghui Xia , Yixi Lin , Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
Yanjing Li , Jiayin Li , Yuqi Chang , Yunfeng Lin , Lei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414
Ting Li , Xinxin Zheng , Lejing Qu , Yuanyuan Ou , Sai Qiao , Xue Zhao , Yajun Zhang , Xinfeng Zhao , Qian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476