Application of Langlois' reagent (NaSO2CF3) in C–H functionalisation
-
* Corresponding author.
E-mail address: liwanmei@hznu.edu.cn (W. Li).
1 These authors contributed equally to this work.
Citation:
Jiabin Shen, Jun Xu, Lei He, Chenfeng Liang, Wanmei Li. Application of Langlois' reagent (NaSO2CF3) in C–H functionalisation[J]. Chinese Chemical Letters,
;2022, 33(3): 1227-1235.
doi:
10.1016/j.cclet.2021.09.005
J. R. Pinchman, D. L. Boger, J. Med. Chem. 56 (2013) 4116–4124.
doi: 10.1021/jm4004494
J. L. Gilmore, J. E. Sheppeck, S. H. Watterson, et al., J. Med. Chem. 59 (2016) 6248–6264.
doi: 10.1021/acs.jmedchem.6b00373
L. Yu, M. Huang, T. Xu, et al., Eur. J. Med. Chem. 126 (2017) 1107–1117.
doi: 10.1016/j.ejmech.2016.12.006
J. Wu, Y. Cheng, J. Lan, D. Wu, S. Qian, J. Am. Chem. Soc. 138 (2016), 12803–12812.
doi: 10.1021/jacs.6b03890
S. Li, J.A. Ma, Chem. Soc. Rev. 44 (2015) 7439–7448.
doi: 10.1039/C5CS00342C
N. Meng, Y. Lv, Q. Liu, et al., Chin. Chem. Lett. 32 (2021) 258–262.
doi: 10.1016/j.cclet.2020.11.034
R. Tao, X.J. Yin, K.H. Wang, et al., Chin. Chem. Lett. 26 (2015) 1046–1049.
doi: 10.1016/j.cclet.2015.04.015
K. Muller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886.
doi: 10.1126/science.1131943
M. Hird, Chem. Soc. Rev. 36 (2007) 2070–2095.
doi: 10.1039/b610738a
K.L. Kirk, Org. Process Res. Dev. 12 (2008) 305–321.
doi: 10.1021/op700134j
H. Mei, A.M. Remete, Y. Zou, et al., Chin. Chem. Lett. 31 (2020) 2401–2413.
doi: 10.1016/j.cclet.2020.03.050
T. Furuya, A.S. Kamlet, T. Ritter, Nature 473 (2011) 470–477.
doi: 10.1038/nature10108
O.A. Tomashenko, V.V. Grushin, Chem. Rev. 111 (2011) 4475–4521.
doi: 10.1021/cr1004293
T. Umemoto, Chem. Rev. 96 (1996) 1757–1777.
doi: 10.1021/cr941149u
L. Ting, R. Shou, H. Mei, C. Cheng, S. Cai, Chin. Chem. Lett. 21 (2010) 1247–1250.
F. Bull. Swarts Acad. Roy. Belg. 24 (1892) 309–311.
J.H. Simons, C.J. Lewis, J. Am. Chem. Soc. 60 (1938) 492–493.
doi: 10.1021/ja01269a507
T. Furuya, A.S. Kamlet, T. Ritter, Nature 437 (2011) 470–477.
doi: 10.1038/nature10108
O.A. Tomashenko, E.C. Escudero-Adán, M.M. Belmonte, V.V. Grushin, Angew. Chem. Int. Ed. 50 (2011) 7655–7659.
doi: 10.1002/anie.201101577
Y. Ye, M.S. Sanford, J. Am. Chem. Soc. 134 (2012) 9034–9037.
doi: 10.1021/ja301553c
K. Zhang, X.H. Xu, F.L. Qing, J. Org. Chem. 80 (2015) 7658–7665.
doi: 10.1021/acs.joc.5b01295
J. Hong, G. Wang, L. Huo, C. Zheng, Chin. J. Chem. 35 (2017) 1761–1767.
doi: 10.1002/cjoc.201700311
Z. Bazyar, M. Hosseini-Sarvari, Org. Process Res. Dev. 23 (2019) 2345–2353.
doi: 10.1021/acs.oprd.9b00225
D.H. Yu, J.N. Shao, R.X. He, M. Li, Chin. Chem. Lett. 26 (2015) 564–566.
doi: 10.1016/j.cclet.2014.12.017
R.P. Bhaskaran, B.P. Babu, Adv. Synth. Catal. 362 (2020) 5219–5237.
doi: 10.1002/adsc.202000996
X. Pan, H. Xia, J. Wu, Org. Chem. Front. 3 (2016) 1163–1185.
doi: 10.1039/C6QO00153J
Q. Lefebvre, Synlett. 28 (2017) 19–23.
S. Barata-Vallejo, A. Postigo, Chem. Eur. J. 26 (2020) 11065–11084.
doi: 10.1002/chem.202000856
O.A. Tomashenko, V.V. Grushin, Chem. Rev. 111 (2011) 4475–4521.
doi: 10.1021/cr1004293
A. Studer, Angew. Chem. Int. Ed. 51 (2012) 8950–8958.
doi: 10.1002/anie.201202624
C. Zhang, Adv. Synth. Catal. 356 (2014) 2895–2906.
doi: 10.1002/adsc.201400370
M. Tordeux, B.R. Langlois, C. Wakselman, J. Org. Chem. 54 (1989) 2452–2453.
doi: 10.1021/jo00271a041
B.R. Langlois, E. Laurent, N. Roidot, Tetrahedron Lett. 32 (1991) 7525–7528.
doi: 10.1016/0040-4039(91)80524-A
B.R. Langlois, T. Billard, J.C. Mulatier, C. Yezegue-lian, J. Fluor. Chem. 128 (2007) 851–856.
doi: 10.1016/j.jfluchem.2007.04.012
H.P. Cao, Q.Y. Chen, J. Fluor. Chem. 128 (2007) 1187–1190.
doi: 10.1016/j.jfluchem.2007.04.018
R.C. Simon, E. Busto, N. Richter, et al., Nat. Commun. 7 (2016) 13323.
doi: 10.1038/ncomms13323
J. Xu, K. Cheng, C. Shen, et al., ChemCatChem 10 (2018) 965–970.
doi: 10.1002/cctc.201701596
X. Shi, X. Li, L. Ma, D. Shi, Catalysts 9 (2019) 278–291.
doi: 10.3390/catal9030278
L.H. Wu, K. Zhao, Z.L. Shen, T.P. Loh, Org. Chem. Front. 4 (2017) 1872–1875.
doi: 10.1039/C7QO00416H
H. B. Yang, N. Selander, Org. Biomol. Chem. 15 (2017) 1771–1775.
doi: 10.1039/C7OB00203C
C. Shen, J. Xu, B. Ying, P. Zhang, ChemCatChem 8 (2016) 3560–3564.
doi: 10.1002/cctc.201601068
S.Z. Sun, H. Xu, H.X. Dai, Chin. Chem. Lett. 30 (2019) 969–972.
doi: 10.1016/j.cclet.2019.02.011
Y. Zhu, J. Tian, X. Gu, Y. Wang, J. Org. Chem. 83 (2018) 13267–13275.
doi: 10.1021/acs.joc.8b02073
G.B. Li, C. Zhang, Chun Song, Y.D. Ma, Beilstein J. Org. Chem. 14 (2018) 155–181.
doi: 10.3762/bjoc.14.11
Y.A. Konik, M. Kudrjashova, N. Konrad, et al., Org. Biomol. Chem. 15 (2017) 4635–4643.
doi: 10.1039/C7OB00680B
Q. Wang, P. Shi, R. Zeng, RSC Adv. 8 (2018) 25961–25965.
doi: 10.1039/C8RA04088E
J. Xu, L. Qiao, J. Shen, et al., Org. Lett. 19 (2017) 5661–5664.
doi: 10.1021/acs.orglett.7b02823
C. Li, K. Suzuki, K. Yamaguchi, N. Mizuno, New J. Chem. 41 (2017) 1417–1420.
doi: 10.1039/C6NJ03654F
H.L. Huang, H. Yan, G.L. Gao, C. Yang, W. Xia, Asian J. Org. Chem. 7 (2015) 674–677.
doi: 10.1002/ajoc.201500096
D. Liang, Q. Dong, P. Xu, et al., J. Org. Chem. 83 (2018) 11978–11986.
doi: 10.1021/acs.joc.8b01861
F. Gao, F.X. Meng, J.Y. Du, S. Zhang, H.L. Huang, Eur. J. Org. Chem. 2020 (2020) 209–212.
doi: 10.1002/ejoc.201901636
N. Meng, L. Wang, Q. Liu, et al., J. Org. Chem. 85 (2020) 6888–6896.
doi: 10.1021/acs.joc.9b03505
L. H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237–1240.
doi: 10.1016/j.cclet.2019.04.033
Z. Lu, O. Hennis, J. Gentry, B. Xu, G.B. Hammond, Org. Lett. 22 (2020) 4383–4388.
doi: 10.1021/acs.orglett.0c01395
D. Wang, G.J. Deng, S. Chen, H. Gong, Green Chem. 18 (2016) 5967–5970.
doi: 10.1039/C6GC02000C
L. Wang, Y. Zhang, F. Li, et al., Adv. Synth. Catal. 360 (2018) 3969–3977.
doi: 10.1002/adsc.201800863
J.M. Lear, J.Q. Buquoi, X. Gu, et al., Chem. Commun. 55 (2019) 8820–8823.
doi: 10.1039/c9cc03498f
Z. Wu, Y. He, C. Ma, et al., Asian J. Org. Chem. 5 (2016) 724–728.
doi: 10.1002/ajoc.201600128
X. Xua, F. Liu, Org. Chem. Front. 4 (2017) 2306–2310.
doi: 10.1039/C7QO00635G
Z. Tan, S. Zhang, Y. Zhang, et al., J. Org. Chem. 82 (2017) 9384–9399.
doi: 10.1021/acs.joc.7b01359
Y. Yang, L. Xu, S. Yu, et al., Chem. Eur. J. 22 (2016) 858–863.
doi: 10.1002/chem.201504790
S. Lu, W. Chen, Q. Shen, Chin. Chem. Lett. 30 (2019) 2279–2281.
doi: 10.1016/j.cclet.2019.07.060
Y. Guo, M.W. Huang, X.L. Fu, et al., Chin. Chem. Lett. 28 (2017) 719–728.
doi: 10.1016/j.cclet.2017.02.006
M.J. Bu, G.P. Lu, C. Cai, Org. Chem. Front. 4 (2017) 266–270.
doi: 10.1039/C6QO00622A
D.W. Sun, X. Jiang, M. Jiang, Y. Lin, J.T. Liu, Eur. J. Org. Chem. (2017) 3505–3511.
doi: 10.1002/ejoc.201700661
Q. Yan, L. Jiang, W. Yi, Q. Liu, W. Zhang, Adv. Synth. Catal. 359 (2017) 2471–2480.
doi: 10.1002/adsc.201700270
X. Zhao, A. Wei, B. Yang, et al., J. Org. Chem. 82 (2017) 9175–9181.
doi: 10.1021/acs.joc.7b01226
Z. Q. Liu, D. Liu, J. Org. Chem. 82 (2017) 1649–1656.
doi: 10.1021/acs.joc.6b02812
K. Lu, X. Wei, Q. Li, et al., Org. Chem. Front. 6 (2019) 3766–3770.
doi: 10.1039/c9qo00940j
Q. Lefebvre, N. Hoffmann, M. Rueping, Chem. Commun. 52 (2016) 2493–2496.
doi: 10.1039/C5CC09881E
S. Corsico, M. Fagnoni, D. Ravelli, Photochem. Photobiol. Sci. 16 (2017) 1375–1380.
doi: 10.1039/C7PP00179G
S. A. Miller, B. van Beek, T. A. Hamlin, et al., J. Fluor. Chem. 214 (2018) 94–100.
doi: 10.1016/j.jfluchem.2018.08.005
Q. Zhou, S. Xu, R. Zhang, Tetrahedron Lett. 60 (2019) 734–738.
doi: 10.1016/j.tetlet.2019.02.003
A. Murugan, V. N. Babu, A. Polu, et al., J. Org. Chem. 84 (2019) 7796–7803.
doi: 10.1021/acs.joc.9b00676
Z. Wei, S. Qi, Y. Xu, et al., Adv. Synth. Catal. 361 (2019) 5490–5498.
doi: 10.1002/adsc.201900885
Z. Bazyar, M. Hosseini-Sarvari, Org. Process Res. Dev. 23 (2019) 2345–2353.
doi: 10.1021/acs.oprd.9b00225
Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51 (2012) 68–89.
doi: 10.1002/anie.201101182
I. Ghosh, J. Khamrai, A. Savateev, et al., Science 365 (2019) 360–366.
doi: 10.1126/science.aaw3254
C. Xia, K. Wang, G. Wang, G. Duan, Org. Biomol. Chem. 16 (2018) 2214–2218.
C. Tian, Q. Wang, X. Wang, G. An, G. Li, J. Org. Chem. 84 (2019) 14241–14247.
doi: 10.1021/acs.joc.9b01987
L. Zhao, P. Li, H. Zhang, L. Wang, Org. Chem. Front. 6 (2019) 87–93.
doi: 10.1039/c8qo01079j
A. Abramov, H. Vernickel, C. Saldías, D. D. Díaz, Molecules 24 (2019) 29–40.
Z. Jia, Y. Yuan, X. Zong, B. Wu, J. Ma, Chin. Chem. Lett. 30 (2019) 1488–1494.
L. Li, X. Mu, W. Liu, et al., J. Am. Chem. Soc. 138 (2016) 5809–5812.
doi: 10.1021/jacs.6b02782
N. Lin, Y. Li, X. Hao, et al., J. Fluor. Chem. 214 (2018) 42–47.
J. Wang, B. Sun, L. Zhang, et al., Asian J. Org. Chem. 8 (2019) 1942–1946.
doi: 10.1002/ajoc.201900414
L. Zhao, P. Li, X. Xie, L. Wang, Org. Chem. Front. 5 (2018) 1689–1697.
L. Zou, P. Li, B. Wang, L. Wang, Chem. Commun. 55 (2019) 3437–3470.
I. Abdiaj, C. Bottecchia, J. Alcazar, T. Noёl, Synthesis 49 (2017) 4978–4985.
Y. Qiu, A. Scheremetjew, L. Ackermann, J. Am. Chem. Soc. 141 (2019) 2731–2738.
doi: 10.1021/jacs.8b13692
T. Gieshoff, A. Kehl, D. Schollmeyer, K.D. Moeller, S.R. Waldvogel, J. Am. Chem. Soc. 139 (2017) 12317–12324.
doi: 10.1021/jacs.7b07488
B.K. Peters, K.X. Rodriguez, S.H. Reisberg, et al., Science 363 (2019) 838–845.
doi: 10.1126/science.aav5606
H. Hong, Y. Li, L. Chen, J. Org. Chem. 84 (2019) 5980–5986.
doi: 10.1021/acs.joc.9b00766
Y. Deng, F. Lu, S. You, et al., Chin. J. Chem. 37 (2019) 817–820.
doi: 10.1002/cjoc.201900168
Y. Qiu, A. Scheremetjew, L.H. Finger, L. Ackermann, Chem. Eur. J. 26 (2020) 3241–3246.
doi: 10.1002/chem.201905774
C. Xua, Y. Liua, H. Liua, et al., Tetrahedron Lett. 61 (2020) 152226–152230.
H. Zhang, W. Wu, Y. Mo, Comput. Theor. Chem. 1116 (2017) 50–58.
doi: 10.1016/j.comptc.2017.02.005
G. Choi, G.S. Lee, B. Park, D. Kim, S.H. Hong, Angew. Chem. Int. Ed. 60 (2021) 5467–5474.
doi: 10.1002/anie.202012263
Xin Li , Jia-Min Lu , Bo Li , Chen Zhao , Bei-Bei Yang , Li Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
Xinghao Cai , Chen Ma , Ying Kang , Yuqiang Ren , Xue Meng , Wei Lu , Shiming Fan , Shouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901
Jiaming Li , Na Xu , Yafei Zhang , Hongjun Dong , Chunmei Li . Research progress of heterogeneous photocatalyst for H2O2 production: A mini review. Chinese Chemical Letters, 2025, 36(11): 110470-. doi: 10.1016/j.cclet.2024.110470
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Linyu Zhu , Xu Tian , Guang Shi , Wenchi Zhang , Peisong Tang , Mohamed Bououdina , Sajjad Ali , Pengfei Xia . Assembling 3D cross-linked network by carbon nitride nanowires for visible-light photocatalytic H2 evolution from dyestuffs wastewater. Chinese Chemical Letters, 2025, 36(12): 111088-. doi: 10.1016/j.cclet.2025.111088
Pin Cui , Ying Tang , Jie Yu , Zhen Yang , Shouhua Yang , Boqin Li , Gang Wang , Huan Pang , Feng Yu . Bimetallic ZnFe–NC prepared using microchannel reactor for oxygen reduction reaction and mechanism research. Chinese Chemical Letters, 2025, 36(9): 110303-. doi: 10.1016/j.cclet.2024.110303
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Kai Zhu , Lei Yang , Yang Yang , Yanqi Wu , Fengzhi Zhang . Recent advances toward the catalytic enantioselective synthesis of planar chiral cyclophanes. Chinese Chemical Letters, 2025, 36(7): 110678-. doi: 10.1016/j.cclet.2024.110678
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Chunrui Zhao , Tianren Li , Jiage Li , Yansong Liu , Zian Fang , Xinyu Wang , Mingxin Huo , Shuangshi Dong , Mingyu Li . Doped cobalt for simultaneously promoting active (001) facet exposure of MIL-68(In) and acting as reactive sites in peroxymonosulfate-mediated photocatalytic decontamination. Chinese Chemical Letters, 2025, 36(5): 110201-. doi: 10.1016/j.cclet.2024.110201
Xin Zhou , Xuejia Li , Yujia Xiang , Heng Zhang , Chuanshu He , Zhaokun Xiong , Wei Li , Peng Zhou , Hongyu Zhou , Yang Liu , Bo Lai . The application of low-valent sulfur oxy-acid salts in advanced oxidation and reduction processes: A review. Chinese Chemical Letters, 2025, 36(9): 110664-. doi: 10.1016/j.cclet.2024.110664
Zhenguo Zhang , Lanyang Li , Xinlong Zong , Yongheng Lv , Shuanglei Liu , Liang Ji , Xuefei Zhao , Zhenhua Jia , Teck-Peng Loh . "Water" accelerated B(C6F5)3-catalyzed Mukaiyama-aldol reaction: Outer-sphere activation model. Chinese Chemical Letters, 2025, 36(7): 110504-. doi: 10.1016/j.cclet.2024.110504
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101