Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction
-
* Corresponding authors.
E-mail addresses: leiht2017@snnu.edu.cn (H. Lei), ruicao@snnu.edu.cn (R. Cao).
Citation:
Qingxin Zhang, Yabo Wang, Yanzhi Wang, Shujiao Yang, Xuan Wu, Bin Lv, Ni Wang, Yimei Gao, Xiaoran Xu, Haitao Lei, Rui Cao. Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction[J]. Chinese Chemical Letters,
;2021, 32(12): 3807-3810.
doi:
10.1016/j.cclet.2021.04.048
W. Zhang, W. Lai, R. Cao, Chem. Rev. 117(2017) 3717-3797.
doi: 10.1021/acs.chemrev.6b00299
H. Lei, H. Fang, Y. Han, et al., ACS Catal. 5(2015) 5145-5153.
doi: 10.1021/acscatal.5b00666
B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Chin. Chem. Lett. 29(2018) 1757-1767.
doi: 10.1016/j.cclet.2018.11.021
H. Lei, X. Li, J. Meng, et al., ACS Catal. 9(2019) 4320-4344.
doi: 10.1021/acscatal.9b00310
X.P. Zhang, A. Chandra, Y.M. Lee, et al., Chem. Soc. Rev. 50(2021) 4804-4811.
doi: 10.1039/D0CS01456G
Y. Liu, Y. Han, Z. Zhang, et al., Chem. Sci. 10(2019) 2613-2622.
doi: 10.1039/C8SC04529A
R. Blankenship, D. Tiede, J. Barber, et al., Science 332(2011) 805-809.
doi: 10.1126/science.1200165
D. Gust, T. Moore, A. Moore, Acc. Chem. Res. 42(2009) 1890-1898.
doi: 10.1021/ar900209b
Y. Tong, H. Liu, M. Dai, L. Xiao, X. Wu, Chin. Chem. Lett. 31(2020) 2295-2299.
doi: 10.1016/j.cclet.2020.03.029
G. Xu, H. Lei, G. Zhou, et al., Chem. Commun 55(2019) 12647-12650.
doi: 10.1039/C9CC06916J
M.G. Walter, E.L. Warren, J.R. McKone, et al., Chem. Rev. 110(2010) 6446-6473.
doi: 10.1021/cr1002326
X. Gao, Y. Chen, T. Sun, et al., Small 15(2019) e1904579.
doi: 10.1002/smll.201904579
H. Lei, A. Han, F. Li, et al., Phys. Chem. Chem. Phys. 16(2014) 1883-1893.
doi: 10.1039/C3CP54361G
X. Guo, N. Wang, X. Li, et al., Angew. Chem. Int. Ed. 59(2020) 8941-8946.
doi: 10.1002/anie.202002311
H.J. Choi, N. Ashok Kumar, J.B. Baek, Nanoscale 7(2015) 6991-6998.
doi: 10.1039/C4NR06831A
Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 4(2011) 3167-3192.
doi: 10.1039/c0ee00558d
Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 44(2015) 2168-2201.
doi: 10.1039/C4CS00484A
Y. Deng, L. Yang, Y. Wang, et al., Chin. Chem. Lett. 32(2021) 511-515.
doi: 10.1016/j.cclet.2020.03.076
C. Wang, L. Jin, H. Shang, et al., Chin. Chem. Lett. 32(2021) 2108-2116.
doi: 10.1016/j.cclet.2020.11.051
H. Qin, Y. Wang, B. Wang, et al., J. Energy Chem. 53(2021) 77-81.
doi: 10.1016/j.jechem.2020.05.015
T. Nakazono, A.R. Parent, K. Sakai, Chem. Commun. 49(2013) 6325-6327.
doi: 10.1039/c3cc43031f
D. Wang, J.T. Groves, Proc. Natl. Acad. Sci. U. S. A. 110(2013) 15579-15584.
doi: 10.1073/pnas.1315383110
J.D. Blakemore, R.H. Crabtree, G.W. Brudvig, Chem. Rev. 115(2015) 12974-13005.
doi: 10.1021/acs.chemrev.5b00122
D.K. Dogutan, Jr. McGuire R., D.G. Nocera, J. Am. Chem. Soc. 133(2011) 9178-9180.
doi: 10.1021/ja202138m
D.G. Hetterscheid, J.N. Reek, Angew. Chem. Int. Ed. 51(2012) 9740-9747.
doi: 10.1002/anie.201202948
M.D. Kärkäs, O. Verho, E.V. Johnston, B. Åkermar, Chem. Rev. 114(2014) 11863-12001.
doi: 10.1021/cr400572f
M.M. Najafpour, G. Renger, M. Holynska, et al., Chem. Rev. 116(2016) 2886-2936.
doi: 10.1021/acs.chemrev.5b00340
W. Schofberger, F. Faschinger, S. Chattopadhyay, et al., Angew. Chem. Int. Ed. 55(2016) 2350-2355.
doi: 10.1002/anie.201508404
W. Sinha, A. Mizrahi, A. Mahammed, B. Tumanskii, Z. Gross, Inorg. Chem. 57(2018) 478-485.
doi: 10.1021/acs.inorgchem.7b02696
B. Wurster, D. Grumelli, D. Hötger, R. Gutzler, K. Kern, J. Am. Chem. Soc. 138(2016) 3623-3626.
doi: 10.1021/jacs.5b10484
L. Xu, H. Lei, Z. Zhang, et al., Phys. Chem. Chem. Phys. 19(2017) 9755-9761.
doi: 10.1039/C6CP08495H
Y. Han, Y. Wu, W. Lai, R. Cao, Inorg. Chem. 54(2015) 5604-5613.
doi: 10.1021/acs.inorgchem.5b00924
Z. Liang, H. Guo, G. Zhou, et al., Angew. Chem. Int. Ed. 60(2021) 8472-8476.
doi: 10.1002/anie.202016024
L. Xie, X.P. Zhang, B. Zhao, et al., Angew. Chem. Int. Ed. 60(2021) 7576-7581.
doi: 10.1002/anie.202015478
Z. Liang, H. Wang, H. Zheng, W. Zhang, R. Cao, Chem. Soc. Rev. 50(2021) 2540-2581.
doi: 10.1039/D0CS01482F
L. Xie, X. Li, B. Wang, et al., Angew. Chem. Int. Ed. 58(2019) 18883-18887.
doi: 10.1002/anie.201911441
L. Xie, J. Tian, Y. Ouyang, et al., Angew. Chem. Int. Ed. 59(2020) 15844-15848.
doi: 10.1002/anie.202003836
X. Li, H. Lei, J. Liu, et al., Angew. Chem. Int. Ed. 57(2018) 15070-15075.
doi: 10.1002/anie.201807996
Z. Chen, J.J. Concepcion, H. Luo, et al., J. Am. Chem. Soc. 132(2010) 17670-17673.
doi: 10.1021/ja107347n
E.L. Demeter, S.L. Hilburg, N.R. Washburn, T.J. Collins, J.R. Kitchin, J. Am. Chem. Soc. 136(2014) 5603-5606.
doi: 10.1021/ja5015986
S. Gentil, D. Serre, C. Philouze, et al., Angew. Chem. Int. Ed. 55(2016) 2517-2520.
doi: 10.1002/anie.201509593
I. Hijazi, T. Bourgeteau, R. Cornut, et al., J. Am. Chem. Soc. 136(2014) 6348-6354.
doi: 10.1021/ja500984k
M. Jahan, Q. Bao, K.P. Loh, J. Am. Chem. Soc. 134(2012) 6707-6713.
doi: 10.1021/ja211433h
P. Kang, S. Zhang, T.J. Meyer, M. Brookhart, Angew. Chem. Int. Ed. 53(2014) 8709-8713.
doi: 10.1002/anie.201310722
A. Maurin, M. Robert, J. Am. Chem. Soc. 138(2016) 2492-2495.
doi: 10.1021/jacs.5b12652
S. Kim, D. Jang, J. Lim, et al., ChemSusChem 10(2017) 3473-3481.
doi: 10.1002/cssc.201701038
M. Tavakkoli, M. Nosek, J. Sainio, et al., ACS Catal. 7(2017) 8033-8041.
doi: 10.1021/acscatal.7b02878
P.D. Tran, A. Le Goff, J. Heidkamp, et al., Angew. Chem. Int. Ed. 50(2011) 1371-1374.
doi: 10.1002/anie.201005427
P.J. Wei, G.Q. Yu, Y. Naruta, J.G. Liu, Angew. Chem. Int. Ed. 53(2014) 6659-6663.
doi: 10.1002/anie.201403133
J. Wang, L. Xu, T. Wang, et al., Adv. Energy Mater. (2021) 2003575.
D.L. Ashford, A.M. Lapides, A.K. Vannucci, et al., J. Am. Chem. Soc. 136(2014) 6578-6581.
doi: 10.1021/ja502464s
A. Friedman, L. Landau, S. Gonen, Z. Gross, L. Elbaz, ACS Catal. 8(2018) 5024-5031.
doi: 10.1021/acscatal.8b00876
X.M. Hu, Z. Salmi, M. Lillethorup, et al., Chem. Commun. 52(2016) 5864-5867.
doi: 10.1039/C6CC00982D
A. Bettelheinv, B.A. White, S.A. Raybuck, R.W. Murray, Inorg. Chem. 26(1987) 1009-1017.
doi: 10.1021/ic00254a011
W. Chen, J. Akhigbe, C.B. Ckner, C.M. Li, Y. Lei, J. Phys. Chem. C 114(2010) 8633-8638.
doi: 10.1021/jp101011f
M.G. Walter, C.C. Wamser, J. Phys. Chem. C 114(2010) 7563-7574.
doi: 10.1021/jp910016h
N. Maiti, J. Lee, S.J. Kwon, et al., Polyhedron 25(2006) 1519-1530.
doi: 10.1016/j.poly.2005.10.016
N. Maiti, J. Lee, Y. Do, H.S. Shin, D.G. Churchill, J. Chem. Crystallogr. 35(2005) 949-955.
doi: 10.1007/s10870-005-5178-9
A.N. Marianov, Y. Jiang, ACS Sustainable Chem. Eng. 7(2019) 3838-3848.
doi: 10.1021/acssuschemeng.8b04735
A.N. Marianov, Y. Jiang, Appl. Catal. B 244(2019) 881-888.
doi: 10.1016/j.apcatb.2018.11.084
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Ling Fang , Sha Wang , Shun Lu , Fengjun Yin , Yujie Dai , Lin Chang , Hong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
Shimei Wu , Yining Li , Lantao Chen , Yufei Zhang , Lingxing Zeng , Haosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849