Citation: Xiaochen Wang, Jianyang Dong, Yuxiu Liu, Hongjian Song, Qingmin Wang. Decatungstate as a direct hydrogen atom transfer photocatalyst for synthesis of trifluromethylthioesters from aldehydes[J]. Chinese Chemical Letters, ;2021, 32(10): 3027-3030. doi: 10.1016/j.cclet.2021.03.070 shu

Decatungstate as a direct hydrogen atom transfer photocatalyst for synthesis of trifluromethylthioesters from aldehydes

    Dedicated this paper to the 100th anniversary of Chemistry at Nankai University.
    * Corresponding author at: State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
    E-mail address: wangqm@nankai.edu.cn (Q. Wang).
  • Received Date: 21 January 2021
    Revised Date: 19 March 2021
    Accepted Date: 25 March 2021
    Available Online: 29 March 2021

Figures(5)

  • We have developed a versatile, mild protocol for trifluoromethylthiolation reactions of aldehydes with catalysis by a decatungstate hydrogen atom transfer photocatalyst under redox-neutral conditions. The protocol is highly selective, operationally simple, and compatible with a wide array of sensitive functional groups. It can be used for late-stage functionalization of bioactive molecules, which makes it convenient for drug discovery.
  • 加载中
    1. [1]

      (a) V.N. Boiko, Beilstein J. Org. Chem. 6 (2010) 880-921;
      (b) F. Toulgoat, S. Alazet, T. Billard, Eur. J. Org. Chem. (2014) 2415-2428;
      (c) X.H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 115 (2015) 731-764;
      (d) C. Ni, J. Hu, Chem. Soc. Rev. 45 (2016) 5441-5454.

    2. [2]

      (a) D.T. Wong, K.W. Perry, F.P. Bymaster, Nat. Rev. Drug Discov. 4 (2005) 764-774;
      (b) W.K. Hagmann, J. Med. Chem. 51 (2008) 4359-4369;
      (c) K.L. Kirk, Org. Process Res. Dev. 12 (2008) 305-321;
      (d) N.A. Meanwell, J. Med. Chem. 54 (2011) 2529-2591.

    3. [3]

      (a) A. Leo, C. Hansch, D. Elkins, Chem. Rev. 71 (1971) 525-616;
      (b) L.M. Yagupol'skii, A.Y. Ilchenko, N.V. Kondratenko, Russ. Chem. Rev. 43 (1974) 32.

    4. [4]

      (a) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320-330;
      (b) J. Wang, M. Sànchez-Rosello', J.L. Aceña, etal., Chem. Rev. 114 (2014)2432-2506.

    5. [5]

      C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91(1991) 165-195.  doi: 10.1021/cr00002a004

    6. [6]

      (a) T. Umemoto, S. Ishihara, J. Am. Chem. Soc. 115 (1993) 2156-2164;
      (b) I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem., Int. Ed. 46 (2007) 754-757;
      (c) F. Baert, J. Colomb, T. Billard, Angew. Chem., Int. Ed. 51 (2012) 10382-10385;
      (d) B. Langlois, D. Montégre, N. Roidot, J. Fluorine Chem. 68 (1994) 63-66;
      (e) C. KimmyCao, E. Tretyakov, C. Chen, Green Synth. Catal. 2 (2021) 62-65.

    7. [7]

      (a) E.H. Man, D.D. Coffman, E.L. Muetterties, J. Am. Chem. Soc. 81 (1959) 3575-3577;
      (b) M.M. Kremlev, W. Tyrra, D. Naumann, Y.L. Yagupolskii, Tetrahedron Lett. 45 (2004) 6101-6104;
      (c) M. Zhang, J. Chen, Z. Chen, Z. Weng, Tetrahedron 72 (2016) 3525-3530.

    8. [8]

      (a) J.M.R. Narayanam, C.R.J. Stephenson, Chem. Soc. Rev. 40 (2011) 102-113;
      (b) C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev. 113 (2013) 5322-5363;
      (c) J. Xuan, Z.G. Zhang, W.J. Xiao, Angew. Chem. Int. Ed. 54 (2015) 15632-15641;
      (d) N.A. Romero, D.A. Nicewicz, Chem. Rev. 116 (2016) 10075-10166;
      (e) Q.Q. Zhou, Y.Q. Zou, L.Q. Lu, W.J. Xiao, Angew. Chem. Int. Ed. 58 (2019) 1586-1604;
      (f) R.S.J. Proctor, R.J. Phipps, Angew. Chem. Int. Ed. 58 (2019) 13666-13699.

    9. [9]

      S. Mukherjee, T. Patra, F. Glorius, ACS Catal. 8(2018) 5842-5846.  doi: 10.1021/acscatal.8b01519

    10. [10]

      M. Wang, X. Zhu, X. Zhang, et al., Org. Biomol. Chem. 18(2020) 5918-5926.  doi: 10.1039/D0OB01160F

    11. [11]

      F. Scandola, C.A. Bignozzi, M.T. Indelli, Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds, Kluwer Academic, Dordrecht, The Netherlands, 1993.

    12. [12]

      (a) R.F. Renneke, C.L. Hill, J. Am. Chem. Soc. 108 (1986) 3528-3529;
      (b) R.F. Renneke, C.L. Hill, Angew. Chem. Int. Ed. 27 (1988) 1526-1527;
      (c) D. Ravelli, S. Protti, M. Fagnoni, Acc. Chem. Res. 49 (2016) 2232-2242;
      (d) D.M. Schultz, F. Levesque, D.A. DiRocco, et al., Angew. Chem. Int. Ed. 56 (2017) 15274-15278;
      (e) S.D. Halperin, D. Kwon, M.E. Holmes, et al., Org. Lett. 17 (2015) 5200-5203;
      (f) J.G. West, D. Huang, E.J. Sorensen, Nat. Commun. 6 (2015) 10093-10099;
      (g) I.B. Perry, T.F. Brewer, P.J. Sarver, et al., Nature 560 (2018) 70-75;
      (h) P.J. Sarver, V. Bacauanu, D.M. Schultz, et al., Nat. Chem. 12 (2020) 459-467;
      (i) S. Esposti, D. Dondi, M. Fagnoni, A. Albini, Angew. Chem. Int. Ed. 46 (2007) 2531-2534;
      (j) M.D. Tzirakis, M. Orfanopoulos, J. Am. Chem. Soc. 131 (2009) 4063-4069;
      (k) L. Capaldo, M. Fagnoni, D. Ravelli, Chem. Eur. J. 23 (2017) 6527-6530;
      (l) M. Meanwell, J. Lehmann, M. Eichenberger, R.E. Martin, R. Britton, Chem. Commun. 54 (2018) 9985-9988;
      (m) P. Fan, C. Zhang, Y. Lan, et al., Chem. Commun. 55 (2019) 12691-12694;
      (n) Y. Kuang, H. Cao, H. Tang, et al., Chem. Sci. 11 (2020) 8912-8918;
      (o) P. Fan, Y. Lan, C. Zhang, C. Wang, J. Am. Chem. Soc. 142 (2020) 2180-2186;
      (p) P. Fan, C. Zhang, L. Zhang, C. Wang, Org. Lett. 22 (2020) 3875-3878.

    13. [13]

      (a) J. Dong, X. Wang, Z. Wang, et al., Chem. Sci. 11 (2020) 1026-1031;
      (b) J. Dong, F. Yue, X. Wang, et al., Org. Lett. 22 (2020) 8272-8277.

    14. [14]

      V. De Waele, O. Poizat, M. Fagnoni, A. Bagno, D. Ravelli, ACS Catal. 6(2016) 7174-7182.  doi: 10.1021/acscatal.6b01984

    15. [15]

      (a) C.M. Jensen, K.B. Lindsay, R.H. Taaning, et al., J. Am. Chem. Soc. 127 (2005) 6544-6545;
      (b) S.A. Moteki, A. Usui, S. Selvakumar, T. Zhang, K. Maruoka, Angew. Chem. Int. Ed. 53 (2014) 11060-11064.

    16. [16]

      K. Larsson, L. Rosenhall, Clin. Exp. Allergy 26(Suppl 4) (1996) 18-19.

  • 加载中
    1. [1]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    2. [2]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    3. [3]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    4. [4]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    5. [5]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    6. [6]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    7. [7]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    8. [8]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    9. [9]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    10. [10]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    11. [11]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    12. [12]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    13. [13]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    14. [14]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    15. [15]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    16. [16]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    17. [17]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    18. [18]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    19. [19]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    20. [20]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

Metrics
  • PDF Downloads(12)
  • Abstract views(746)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return