Citation: Shuangjing Zhou, Baogui Cai, Chuxia Hu, Xu Cheng, Lei Li, Jun Xuan. Visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates: An approach to 2, 3-dihydrobenzofuran derivatives[J]. Chinese Chemical Letters, ;2021, 32(8): 2577-2581. doi: 10.1016/j.cclet.2021.03.010 shu

Visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates: An approach to 2, 3-dihydrobenzofuran derivatives

    * Corresponding authors at: Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
    E-mail addresses: lilei@ahu.edu.cn (L. Li), xuanjun@ahu.edu.cn (J. Xuan).
  • Received Date: 30 December 2020
    Revised Date: 1 March 2021
    Accepted Date: 3 March 2021
    Available Online: 5 March 2021

Figures(6)

  • A visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates is developed. This one-pot two step reaction offers a mild and efficient approach for the synthesis of biologically important 2, 3-dihydrobenzofuran derivatives in good yields and moderate diastereoselectivities.
  • 加载中
    1. [1]

      (a) R.S. Ward, Chem. Soc. Rev. 11 (1982) 75–125;
      (b) D.C. Chauret, C.B. Bernard, J.T. Arnason, et al., J. Nat. Prod. 59 (1996) 152–155;
      (c) R.S. Ward, Nat. Prod. Rep. 16 (1999) 75–96;
      (d) N. Beldjoudi, L. Mambu, M. Labaïed, et al., J. Nat. Prod. 66 (2003) 1447-1450;
      (e) T. She, X.N. Wang, H.X. Lou, Nat. Prod. Rep. 26 (2009) 916–935;
      (f) A. Radadiya, A. Shah, Eur. J. Med. Chem. 97 (2015) 356–376;
      (g) R.J. Nevagi, S.N. Dighe, S.N. Dighe, Eur. J. Med. Chem. 97 (2015) 561–581.

    2. [2]

      (a) A. Goel, A. Kumar, A. Raghuvanshi, Chem. Rev. 113 (2013) 1614–1640;
      (b) H.Q. Yin, B.W. Lee, Y.C. Kim, D.H. Sohn, B.H. Lee, Arch. Pharm. Res. 27 (2004) 919–922.

    3. [3]

      (a) T.D. Sheppard, J. Chem. Res. 35 (2011) 377–385;
      (b) C. Zhu, Y. Ding, L.W. Ye, Org. Biomol. Chem. 13 (2015) 2530–2536;
      (c) J.R. Chen, X.Q. Hu, L.Q. Lu, W.J. Xiao, Chem. Rev. 115 (2015) 5301–5365;
      (d) B.M. Trost, O.R. Thiel, H.C. Tsui, J. Am. Chem. Soc. 125 (2013) 13155–13164;
      (e) E.D. Coy B, L. Jovanovic, M. Sefkow, Org. Lett. 12 (2010) 1976–1979;
      (f) J. Meng, T. Jiang, H.A. Bhatti, et al., Org. Biomol. Chem. 8 (2010) 107–113;
      (g) D.H. Wang, J.Q. Yu, J. Am. Chem. Soc. 133 (2011) 5767–5769;
      (h) X.X. Sun, H.H. Zhang, G.H. Li, L. Meng, F. Shi, Chem. Commun. 52 (2016) 2968–2971;
      (i) Y. Cheng, Z. Gang, W. Li, P. Li, Org. Chem. Front. 5 (2018) 2728–2733;
      (j) T. Zhou, T. Xia, Z. Liu, L. Liu, J. Zhang, Adv. Synth. Catal. 360 (2018) 4475–4479.

    4. [4]

      (a) J.Y. Wang, W.J. Hao, S.J. Tu, B. Jiang, Org. Chem. Front. 7 (2020) 1743–1778;
      (b) C.G.S. Lima, F.P. Pauli, D.C.S. Costa, et al., Eur. J. Org. Chem. 2020 (2020) 2650–2692;
      (c) L. Caruana, M. Fochi, L. Bernardi, Molecules 20 (2015) 11733–11764;
      (d) K. Zhao Y. Zhi, T. Shu, et al., Angew. Chem. Int. Ed. 55 (2016) 12104–12108;
      (e) A. Parra, M. Tortosa, ChemCatChem 7 (2015) 1524–1526;
      (f) P. Chauhan, U. Kaya, D. Enders, Adv. Synth. Catal. 359 (2017) 888–912;
      (g) W. Li, X. Xu, P. Zhang, P. Li, Chem. Asian J. 13 (2018) 2350–2359;
      (h) Y.J. Xiong, S.Q. Shi, W.J. Hao, S.J. Tu, B. Jiang, Org. Chem. Front. 5 (2018) 3483–3487;
      (i) S. Liu, X.C. Lan, K. Chen, et al., Org. Lett. 19 (2017) 3831–3834;
      (j) W. Li, H. Yuan, Z. Liu, et al., Adv. Synth. Catal. 360 (2018) 2460–2464;
      (k) Q. Liu, S. Li, X.Y. Chen, K. Rissanen, D. Enders, Org. Lett. 20 (2018) 3622-3626;
      (l) F. Jiang, F.R. Yuan, L.W. Jin, G.J. Mei, F. Shi, ACS Catal. 8 (2018) 10234–10240;
      (m) X.L. Jiang, S.F. Wu, J.R. Wang, G.J. Mei, F. Shi, Adv. Synth. Catal. 360 (2018) 4225–4235;
      (n) J.R. Wang, X.L. Jiang, Q.Q. Hang, et al., J. Org. Chem. 84 (2019) 7829–7839;
      (o) Y.C. Cheng, C.S. Wang, T.Z. Li, et al., Org. Biomol. Chem. 17 (2019) 6662-6679;
      (p) M. Sun, C. Ma, S.J. Zhou, et al., Angew. Chem. Int. Ed. 58 (2019) 8703–8708;
      (q) S. Zhang, X. Yu, J. Pan, et al., Org. Chem. Front. 6 (2019) 3799–3803;
      (r) Z. Li, W. Wang, H. Jian, et al., Chin. Chem. Lett. 30 (2019) 386–388;
      (s) X. Cheng, S.J. Zhou, G.Y. Xu, et al., Adv. Synth. Catal. 362 (2020) 523–527;
      (t) S.J. Zhou, X. Cheng, C.X. Hu, et al., Sci. China Chem. 64 (2021) 61–65;
      (u) J.P. Tan, H. Zhang, Z. Jiang, et al., Adv. Synth. Catal. 362 (2020) 1058–1063;
      (v) S.F. Wu, M.S. Tu, Q.Q. Hang, et al., Org. Biomol. Chem. 18 (2020) 5388–5399.

    5. [5]

      X.M. Chen, K.X. Xie, D.F. Yue, et al., Tetrahedron 74 (2018) 600–605.  doi: 10.1016/j.tet.2017.12.038

    6. [6]

      Y. Zhi, K. Zhao, C.V. Essen, K. Rissanen, D. Enders, Org. Chem. Front. 5 (2018) 1348–1351.  doi: 10.1039/C8QO00008E

    7. [7]

      L. Liu, Z. Yuan, R. Pan, et al., Org. Chem. Front. 5 (2018) 623–628.

    8. [8]

      (a) J. Zhou, G. Liang, X. Hu, L. Zhou, H. Zhou, Tetrahedron 74 (2018) 1492–1496;
      (b) J.P. Tan, P. Yu, J.H. Wu, et al., Org. Lett. 21 (2019) 7298–7302;
      (c) G. Singh, S. Kumar, A. Chowdhury, R.V. Anand, J. Org. Chem. 84 (2019) 15978–15989;
      (d) H. Lu, H.X. Zhang, C.Y. Tan, J. Org. Chem. 84 (2019) 10292–10305.

    9. [9]

      K. Zielke, O. Kováč, M. Winter, J. Pospíšil, M. Waser, Chem. Eur. J. 25 (2019) 8163–8168.  doi: 10.1002/chem.201901784

    10. [10]

      (a) J.M.R. Narayanam, C.R.J. Stephenson, Chem. Soc. Rev. 4 (2011) 102–113;
      (b) Y. Xi, H. Yi, A. Lei, Org. Biomol. Chem. 11 (2013) 2387–2403;
      (c) C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Chem. Rev. 113 (2013) 5322–5363;
      (d) M.N. Hopkinson, B. Sahoo, J.L. Li, F. Glorius, Chem. Eur. J. 20 (2014) 3874–3886;
      (e) N.A. Romero, D.A. Nicewicz, Chem. Rev. 116 (2016) 10075–10166;
      (f) L. Marzo, S. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 57 (2018) 10034–10072;
      (g) Y.Z. Cheng, X. Zhang, S.L. You, Sci. Bull. 63 (2018) 809–811;
      (h) L. Lu, J.L. Zhang, Chin. J. Org. Chem. 39 (2019) 3308–3309;
      (i) B.G. Cai, J. Xuan, W.J. Xiao, Sci. Bull. 64 (2019) 337–350;
      (j) Y. Chen, L.Q. Lu, D.G. Yu, C.J. Zhu, W.J. Xiao, Sci. China Chem. 62 (2019) 24–57;
      (k) T.Y. Shang, L.H. Lu, Z. Cao, et al., Chem. Commun. 55 (2019) 5408–5419;
      (l) X.Y. Yu, Q.Q. Zhao, J. Chen, W.J. Xiao, J.R. Chen, Acc. Chem. Res. 53 (2020) 1066–1083;
      (m) J. Xuan, X.K. He, W.J. Xiao, Chem. Soc. Rev. 49 (2020) 2546–2556;
      (n) W. Xiao, J. Wu, Chin. Chem. Lett. 31 (2020) 3083–3094;
      (o) H.G. Zhang, H. Chen, C. Zhu, S. Yu, Sci. China Chem. 63 (2020) 637–647;
      (p) X. Lv, H. Xu, Y. Yin, X. Zhao, Z. Jiang, Chin. J. Chem. 38 (2020) 1480–1488;
      (q) K. Sun, Q.Y. Lv, X.L. Chen, et al., Green Chem. 23 (2021) 232–248.

    11. [11]

      I. Jurberg, H.M.L. Davies, Chem. Sci. 9 (2018) 5112–5118.  doi: 10.1039/C8SC01165F

    12. [12]

      T. Xiao, M. Mei, Y. He, L. Zhou, Chem. Commun. 54 (2018) 8865–8868.  doi: 10.1039/C8CC04609C

    13. [13]

      (a) H.M.L. Davies, J.R. Manning, Nature 451 (2008) 417–424;
      (b) M.P. Doyle, R. Duffy, M. Ratnikov, Z. Zhou, Chem. Rev. 110 (2010) 704–724;
      (c) X. Guo, W. Hu, Acc. Chem. Res. 46 (2013) 2427–2440;
      (d) S.F. Zhu, Q.L. Zhou, Sci. Rev. 1 (2014) 580–603;
      (e) H.J. Knöker, I. Bauer, Chem. Rev. 115 (2015) 3170–3387;
      (f) L. Mertens, R.M. Koenigs, Org. Biomol. Chem. 14 (2016) 10547–10556;
      (g) Y. Xia, D. Qiu, J. Wang, Chem. Rev. 117 (2017) 13810–13889.

    14. [14]

      (a) L.W. Ciszewski, K. Rybicka-Jasinska, D. Gryko, Org. Biomol. Chem. 17 (2019) 432–448;
      (b) T.B. Hua, Q.Q. Yang, Y.Q. Zou, Molecules 24 (2019) 3191;
      (c) Z. Yang, M.L. Stivanin, I.D. Jurberg, R.M. Koenigs, Chem. Soc. Rev. 49 (2020) 6833–6847;
      (d) S. Jana, Y. Guo, R.M. Koenigs, Chem. Eur. J. 27 (2021) 1270–1281.

    15. [15]

      (a) C. Empel, F.W. Patureau, R.M. Koenigs, J. Org. Chem. 84 (2019) 11316–11322;
      (b) M.L. Stivanin, A.A.G. Fernandes, A.F. da Silva, C.Y. Okada Jr, I.D. Jurberg, Adv. Synth. Catal. 362 (2020) 1106–1111;
      (c) S. Jana, Z. Yang, F. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 5562–5566;
      (d) F. He, F. Li, R.M. Koenigs, J. Org. Chem. 85 (2020) 1240–1246;
      (e) C. Empel, S.J. Orcid, C. Pei, T.V. Nguyen, R.M. Koenigs, Org. Lett. 22 (2020) 7225–7229;
      (f) J. Chen, S. Liu, X. Lv, et al., J. Org. Chem. 85 (2020) 13920–13928;
      (g) J. Yang, G. Wang, S. Chen, et al., Org. Biomol. Chem. 18 (2020) 9494–9498.

    16. [16]

      (a) Y. Guo, T.V. Nguyen, R.M. Koenigs, Org. Lett. 21 (2019) 8814–8818;
      (b) F. He, R.M. Koenigs, Chem. Commun. 55 (2019) 4881–4884;
      (c) X. Zhang, C. Du, H. Zhang, et al., Synthesis 51 (2019) 889–898;
      (d) R. Hommelsheim, Y. Guo, Z. Yang, C. Empel, R.M. Koenigs, Angew. Chem. Int. Ed. 58 (2019) 1203–1207.

    17. [17]

      (a) J. Yang, J. Wang, H. Huang, et al., Org. Lett. 21 (2019) 2654–2657;
      (b) Z. Yang, Y. Guo, R.M. Koenigs, Chem. Eur. J. 25 (2019) 6703–6706;
      (c) K. Orłowska, K. Rybicka-Jasin'ska, P. Krajewski, D. Gryko, Org. Lett. 22 (2020) 1018–1021.

    18. [18]

      (a) Y. Wei, S. Liu, M.M. Li, et al., J. Am. Chem. Soc. 141 (2019) 133–137;
      (b) S. Jana, Z. Yang, C. Pei, X. Xu, R.M. Koenigs, Chem. Sci. 10 (2019) 10129-10134;
      (c) Q.L. Zhang, Q. Xiong, et al., Angew. Chem. Int. Ed. 59 (2020) 14096–14100;
      (d) A.F. da Silva, M.A.S. Afonso, R.A. Cormanich, I.D. Jurberg, Chem. Eur. J. 26 (2020) 5648–5653;
      (e) R. Cheng, C. Qi, L. Wang, et al., Green Chem. 22 (2020) 4890–4895;
      (f) M.A. Ansari, D. Yadav, M.S. Singh, Chem. Eur. J. 26 (2020) 8083–8089.

    19. [19]

      (a) J. Xuan, A. Studer, Chem. Soc. Rev. 46 (2017) 4329–4346;
      (b) B.G. Cai, Z.L. Chen, G.Y. Xu, J. Xuan, W.J. Xiao, Org. Lett. 21 (2019) 4234-4238;
      (c) Q.Q. Ge, J.S. Qian, J. Xuan, J. Org. Chem. 84 (2019) 8691–8701;
      (d) X.K. He, B.G. Cai, Q.Q. Yang, L. Wang, J. Xuan, Chem. Asian J. 14 (2019) 3269-3273;
      (e) J. Lu, X.K. He, X. Cheng, et al., Adv. Synth. Catal. 362 (2020) 2178–2182;
      (f) X.K. He, J. Lu, A.J. Zhang, et al., Org. Lett. 22 (2020) 5984–5989;
      (g) B.G. Cai, S.S. Luo, L. Li, et al., CCS Chem. 2 (2020) 2764–2771;
      (h) C. Ye, B.G. Cai, J. Lu, et al., J. Org. Chem. 86 (2021) 1012–1022.

  • 加载中
    1. [1]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    2. [2]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    3. [3]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    4. [4]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    5. [5]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    8. [8]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    9. [9]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    10. [10]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    11. [11]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    12. [12]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    13. [13]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    14. [14]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    15. [15]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    16. [16]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    17. [17]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    18. [18]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    19. [19]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    20. [20]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

Metrics
  • PDF Downloads(8)
  • Abstract views(530)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return