Substituent position effect of Co porphyrin on oxygen electrocatalysis
-
* Corresponding authors.
E-mail addresses: liangzuozhong@snnu.edu.cn (Z. Liang), ruicao@snnu.edu.cn (R. Cao).
Citation:
Haoyuan Lv, Hongbo Guo, Kai Guo, Haitao Lei, Wei Zhang, Haoquan Zheng, Zuozhong Liang, Rui Cao. Substituent position effect of Co porphyrin on oxygen electrocatalysis[J]. Chinese Chemical Letters,
;2021, 32(9): 2841-2845.
doi:
10.1016/j.cclet.2021.02.032
W. Zhang, W. Lai, R. Cao, Chem. Rev. 117 (2017) 3717-3797
doi: 10.1021/acs.chemrev.6b00299
A.A. Gewirth, J.A. Varnell, A.M. DiAscro, Chem. Rev. 118 (2018) 2313-2339
doi: 10.1021/acs.chemrev.7b00335
Z. Liang, H. Zheng, R. Cao, Sustain Energy Fuels 4 (2020) 3848-3870
doi: 10.1039/d0se00271b
H. Lei, X. Li, J. Meng, et al., ACS Catal. 9 (2019) 4320-4344
doi: 10.1021/acscatal.9b00310
B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Chin. Chem. Lett. 29 (2018) 1757-1767
doi: 10.1016/j.cclet.2018.11.021
Z. Liang, H. Zheng, R. Cao, ChemElectroChem 6 (2019) 2600-2614
doi: 10.1002/celc.201801859
C.X. Zhao, B.Q. Li, J.N. Liu, J.Q. Huang, Q. Zhang, Chin. Chem. Lett. 30 (2019) 911-914
doi: 10.1016/j.cclet.2019.03.026
M.O. Cichocka, Z. Liang, D. Feng, et al., J. Am. Chem. Soc. 142 (2020) 15386-15395
doi: 10.1021/jacs.0c06329
D. Zhao, Z. Zhuang, X. Cao, et al., Chem. Soc. Rev. 49 (2020) 2215-2264
doi: 10.1039/c9cs00869a
L. Xie, X. Li, B. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 18883-18887
doi: 10.1002/anie.201911441
X. Li, H. Lei, J. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 15070-15075
doi: 10.1002/anie.201807996
J. Wang, Z. Zhang, J. Ding, et al., Sci. China. Mater. 64 (2020) 1-26.
doi: 10.1007/s40843-020-1452-9
F. Cao, G. Pan, Y. Zhang, X. Xia, Chin. Chem. Lett. 31 (2020) 2230-2234
doi: 10.1016/j.cclet.2020.01.037
P. Han, T. Tan, F. Wu, et al., Chin. Chem. Lett. 31 (2020) 2469-2472
doi: 10.1016/j.cclet.2020.03.009
Y. Tong, H. Liu, M. Dai, L. Xiao, X. Wu, Chin. Chem. Lett. 31 (2020) 2295-2299
doi: 10.1016/j.cclet.2020.03.029
X. Zhao, J. Meng, Z. Yan, F. Cheng, J. Chen, Chin. Chem. Lett. 30 (2019) 319-323
doi: 10.1016/j.cclet.2018.03.035
J. Song, C. Wei, Z.F. Huang, et al., Chem. Soc. Rev. 49 (2020) 2196-2214
doi: 10.1039/c9cs00607a
Z. Liang, X. Fan, H. Lei, et al., Angew. Chem. Int. Ed. 57 (2018) 13187-13191
doi: 10.1002/anie.201807854
X. Tian, X.F. Lu, B.Y. Xia, X.W. Lou, Joule 4 (2020) 45-68
doi: 10.1016/j.joule.2019.12.014
Z. Liang, Z. Huang, H. Yuan, et al., Chem. Sci. 9 (2018) 6961-6968
doi: 10.1039/C8SC02294A
Y. Zhang, Y. Chen, Z. Liang, et al., Chin. J. Catal. 40 (2019) 1860-1866
doi: 10.1016/S1872-2067(19)63306-1
C. Wang, S. Bai, Y. Xiong, Chin. J. Catal. 36 (2015) 1476-1493
doi: 10.1016/S1872-2067(15)60911-1
Z. Liang, C. Zhang, H. Yuan, et al., Chem. Commun. 54 (2018) 7519-7522
doi: 10.1039/C8CC02646G
H. Qin, Y. Wang, B. Wang, et al., J. Energy Chem. 53 (2021) 77-81
doi: 10.1016/j.jechem.2020.05.015
M. Liu, Z. Zhao, X. Duan, Y. Huang, Adv. Mater. 31 (2019) e1802234
doi: 10.1002/adma.201802234
X. Peng, S. Zhao, Y. Mi, et al., Small 16 (2020) e2002888
doi: 10.1002/smll.202002888
W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Angew. Chem. Int. Ed. 55 (2016) 2650-2676
doi: 10.1002/anie.201504830
E. Casali, E. Gallo, L. Toma, Inorg. Chem. 59 (2020) 11329-11336
doi: 10.1021/acs.inorgchem.0c00912
K. Nishikawa, Y. Honda, H. Fujii, J. Am. Chem. Soc. 142 (2020) 4980-4984
doi: 10.1021/jacs.9b13503
Z. Liang, H.Y. Wang, H. Zheng, W. Zhang, R. Cao, Chem. Soc. Rev. 50 (2021) 2540-2581.
doi: 10.1039/d0cs01482f
L. Xie, X.P. Zhang, B. Zhao, et al., Angew. Chem. Int. Ed. 60 (2021) 7576-7581.
doi: 10.1002/anie.202015478
Z. Liang, H. Guo, G. Zhou, et al., Angew. Chem. Int. Ed. 60 (2021) 8472-8476.
doi: 10.1002/anie.202016024
S. Bhunia, A. Rana, P. Roy, et al., J. Am. Chem. Soc. 140 (2018) 9444-9457
doi: 10.1021/jacs.8b02983
S. Dey, B. Mondal, S. Chatterjee, et al., Nat. Rev. Chem. 1 (2017) 0098
doi: 10.1038/s41570-017-0098
M.L. Pegis, C.F. Wise, D.J. Martin, J.M. Mayer, Chem. Rev. 118 (2018) 2340-2391
doi: 10.1021/acs.chemrev.7b00542
B. Zhang, L. Sun, Chem. Soc. Rev. 48 (2019) 2216-2264
doi: 10.1039/c8cs00897c
Y. Zhou, Y.F. Xing, J. Wen, et al., Sci. Bull. 64 (2019) 1158-1166
doi: 10.1016/j.scib.2019.07.003
L. Zhao, Q. Xu, Z. Shao, et al., ACS Appl. Mater. Interfaces 12 (2020) 45976-45986
doi: 10.1021/acsami.0c11742
M.L. Pegis, D.J. Martin, C.F. Wise, et al., J. Am. Chem. Soc. 141 (2019) 8315-8326
doi: 10.1021/jacs.9b02640
R. Zhang, J.J. Warren, J. Am. Chem. Soc. 142 (2020) 13426-13434
doi: 10.1021/jacs.0c03861
X.P. Zhang, H.Y. Wang, H. Zheng, W. Zhang, R. Cao, Chin. J. Catal. 42 (2020) 1253-1268.
doi: 10.1016/S1872-2067(20)63681-6
Y. Liu, G. Zhou, Z. Zhang, et al., Chem. Sci. 11 (2020) 87-96
doi: 10.1039/c9sc05041h
H. Wang, H. Ding, X. Meng, C. Wang, Chin. Chem. Lett. 27 (2016) 1376-1382
doi: 10.1016/j.cclet.2016.05.020
Z.B. Sun, S.Y. Li, Z.Q. Liu, C.-H. Zhao, Chin. Chem. Lett. 27 (2016) 1131-1138
doi: 10.1016/j.cclet.2016.06.007
X. Zhang, X.D. Li, Chin. Chem. Lett. 25 (2014) 501-504
doi: 10.1016/j.cclet.2013.11.050
R. Soury, M. Chaabene, M. Jabli, et al., Chem. Eng. J. 375 (2019) 122005
doi: 10.1016/j.cej.2019.122005
G. Xu, H. Lei, G. Zhou, et al., Chem. Commun. 55 (2019) 12647-12650
doi: 10.1039/c9cc06916j
G. Wu, N. Li, D.R. Zhou, K. Mitsuo, B.Q. Xu, J. Solid State Chem. 177 (2004) 3682-3692
doi: 10.1016/j.jssc.2004.06.027
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232