Citation: Hongling Yin, Qin Liu, Xu Deng, Xiaowen Liu, Shuhong Fang, Yuanming Xiong, Jiaojiao Song. Organophosphate esters in water, suspended particulate matter (SPM) and sediments of the Minjiang River, China[J]. Chinese Chemical Letters, ;2021, 32(9): 2812-2818. doi: 10.1016/j.cclet.2021.02.023 shu

Organophosphate esters in water, suspended particulate matter (SPM) and sediments of the Minjiang River, China

    * Corresponding author.
    E-mail address: yhl@cuit.edu.cn (H. Yin).
  • Received Date: 1 December 2020
    Revised Date: 23 December 2020
    Accepted Date: 20 January 2021
    Available Online: 15 February 2021

Figures(2)

  • As organic pollutants of emerging concern, organophosphate esters (OPEs) have shown toxicity to organisms after entering the water environment. However, research on OPEs in freshwater in Southwest China is very limited. The levels, distribution and partitioning behavior of OPEs in the Minjiang River and their influencing factors is still unknown. In this study, six OPEs, tri-n-butyl phosphate (TnBP), tri(2-chloroethyl)-phosphate (TCEP), trichloropropyl phosphate (TCPP), triphenyl phosphate (TPhP), tributoxyethyl phosphate (TBEP), and tris(2-ethylhexyl)-phosphate (TEHP), were determined in surface water, suspended particle matter (SPM) and sediments of the Minjiang River. The results showed that the average concentrations of Σ6OPEs in surface water, SPM and sediments of the Minjiang River were 199.32±124.95 ng/L, 38463.79±45641.89 ng/g dry weight (dw) and 76.45±28.00 ng/g dw, respectively. High concentrations of OPEs were detected in SPM samples, indicating that more attention should be paid to pollution in SPM. It is worth noting that the variation trend of OPEs in SPM was almost opposite to that in water but basically similar to that in sediment. The proportions of alkyl OPEs in Σ6OPEs increased from surface water to SPM and sediments. Alkyl OPEs were the main pollutants in SPM (10.44%–80.88% of Σ6OPEs, mean of 54.52%) and sediments (59.08%–81.30% of Σ6OPEs, mean of 68.91%), whereas chlorinated OPEs were the most abundant components in surface water (43.16%–75.99% of Σ6OPEs, mean of 55.50%). The water-sediment partition coefficient (logKOC) of OPEs was 4.97–7.58, while the water-SPM partition coefficient was 6.71–10.00. No significant correlations were found between logKOW and logKOC. KOW was not the main factor affecting the distribution of OPEs in the Minjiang River, China.
  • 加载中
    1. [1]

      N.J. Andrae. Durable and environmentally friendly flame retardants for synthetics. the United States: North Carolina State University 2007

    2. [2]

      E. Fries, W.K. Puttmann, J. Environ. Monit. 3 (2001) 621-626  doi: 10.1039/b105072a

    3. [3]

      Y. Liu, N. Song, R. Guo, et al., Chemosphere 202 (2018) 255-263  doi: 10.1007/978-981-13-0005-9_22

    4. [4]

      L. Xing, M. Tao, Q. Zhang, M. Kong, C.H. Liu, Sci. Total. Environ. 734 (2020) 111243-111251

    5. [5]

      J.A. Andresen, D. Muir, D. Ueno, et al., Environ. Toxicol. Chem. 26 (2007) 1081-1089  doi: 10.1897/06-416R.1

    6. [6]

      A. Bacaloni, F. Cucci, C. Guarino, et al. Environ. Sci. Technol., 42 (2008) 1898-1903  doi: 10.1021/es702549g

    7. [7]

      P.C. Hartmann, D. Bürgi, W. Giger, Chemosphere 57 (2004) 781-787  doi: 10.1016/j.chemosphere.2004.08.051

    8. [8]

      M. Wensing, E. Uhde, T. Salthammer, Sci. Total. Environ. 339 (2005) 19-40  doi: 10.1016/j.scitotenv.2004.10.028

    9. [9]

      A. Marklund, B. Andersson, P. Haglund, J. Environ. Monit. 7 (2005) 814-819  doi: 10.1039/b505587c

    10. [10]

      Y. Ma, K. Cui, F. Zeng, et al., Anal. Chim. Acta 786 (2013) 47-53  doi: 10.1016/j.aca.2013.04.062

    11. [11]

      J.W. Kim, B.R. Ramaswamy, K.H. Chang, T. Isobe, S. Tanabe, J. Chromatogr. A 1218 (2011) 3511-3520  doi: 10.1016/j.chroma.2011.04.006

    12. [12]

      A.M. Sundkvist, U. Olofsson, P. Haglund, J. Environ. Monit. 12 (2010) 943-951  doi: 10.1039/b921910b

    13. [13]

      L.V. Dishaw, C.M. Powers, I.T. Ryde, et al., Toxicol. Appl. Pharmacol. 256 (2011) 281-289  doi: 10.1016/j.taap.2011.01.005

    14. [14]

      E.M.J. Verbruggen, M. Beek, J. Pijnenburg, T.P. Traas, Environ. Toxicol. Chem. 27 (2010) 2436-2448

    15. [15]

      Y. Zhang, X.B. Zheng, L.F. Wei, Sci. Total. Environ. 630 (2018) 164-170  doi: 10.1093/abbs/gmx135

    16. [16]

      X.L. Wang, L.Y. Zhu, W.J. Zhong, L.P. Yang, J. Hazard. Mater. 360 (2018) 43-50  doi: 10.1504/ijris.2018.091129

    17. [17]

      S.H. Brandsma, P.E. Leonards, H.A. Leslie, J. de Boer, Sci. Total. Environ. 505 (2015) 22-31  doi: 10.1016/j.scitotenv.2014.08.072

    18. [18]

      Y. Shi, L. Gao, W. Li, et al., Environ. Pollut. 209 (2016) 1-10  doi: 10.1155/2016/7230326

    19. [19]

      WHO, Environmental Health Criteria 209, Switzerland, 1998.

    20. [20]

      T. Reemtsma, J.B. Quintana, R. Rodil, M. Garcıa-Lopez, I. Rodrıguez, Trend. Anal. Chem. 27 (2008) 727-737  doi: 10.1016/j.trac.2008.07.002

    21. [21]

      D. Cao, J. Guo, Y. Wang, et al., Environ. Sci. Technol. 51 (2017) 1441-1449  doi: 10.1021/acs.est.6b05484

    22. [22]

      S.H. Fang, C. Li, Y.X. Bian, et al., China Environ. Sci. 39 (2019) 2983-2989

    23. [23]

      D. Wu, H.L. Yin, S.P. Li, et al., Environ. Sci. 40 (2019) 1245-1251

    24. [24]

      H.L. Yin, J.F. Liang, D. Wu, et al., Atmos. Chem. Phys. 20 (2020) 14933-14945  doi: 10.5194/acp-20-14933-2020

    25. [25]

      Y.L. Shi, L.H. Gao, W.H. Li, et al, Environmental pollution, 209 (2016) 1-10  doi: 10.1155/2016/7230326

    26. [26]

      Z.F. Zhang, Jiangxi University of Science and Technology. 2020

    27. [27]

      X. Wang, Y. He, L. Lin, F. Zeng, T. Luan, et al., Sci. Total. Environ. 470 (2014) 263-269

    28. [28]

      R. Wang, J. Tang, Z. Xie, et al., Environ. Pollut. 198 (2015) 172-178  doi: 10.1016/j.envpol.2014.12.037

    29. [29]

      E. Martínez-Carballo, C. González-Barreiro, A. Sitka, S. Scharf, O. Gans, Sci. Total. Environ. 388 (2008) 290-299

    30. [30]

      A. Bacaloni, C. Cavaliere, P. Foglia, et al., Rapid. Commun. Mass. Sp. 21 (2007) 1123-1130  doi: 10.1002/rcm.2937

    31. [31]

      S. Cao, X. Zeng, H. Song, et al., Environ. Toxicol. Chem. 31 (2012) 1478-1484  doi: 10.1002/etc.1872

    32. [32]

      M. Giulivo, E. Capri, E. kalogianni, et al., Sci. Total. Environ. 586 (2017) 782-791  doi: 10.1016/j.scitotenv.2017.02.056

    33. [33]

      H. Matsukami, N.M. Tue, G. Suzuki, et al., Sci. Total. Environ. 514 (2015) 492-499  doi: 10.1016/j.scitotenv.2015.02.008

    34. [34]

      A.A. Peverly, C. O' Sullivan, L.Y. Liu, et al., Chemosphere 134 (2015) 380-386  doi: 10.1016/j.chemosphere.2015.04.065

    35. [35]

      Y.T. Lu, S. Zhao, Y.L. Qiu, et al, Environmental pollution and prevention. 40(05) (2018) 604-608

    36. [36]

      X.X. Tan, X.J. Luo, X.B. Zheng, et al., Sci. Total. Environ. 544 (2016) 77-84  doi: 10.1016/j.scitotenv.2015.11.089

    37. [37]

      S. Lee, H.J. Cho, W. Choi, H.B. Moon, Mar. Pollut. Bull. 130 (2018) 105-112  doi: 10.14579/membrane_journal.2018.28.2.105

    38. [38]

      G.L. Wei, D.Q. Li, M.N. Zhuo, et al., Environ. Pollut. 196 (2015) 29-46  doi: 10.1016/j.envpol.2014.09.012

    39. [39]

      M. Iqbal, J.H. Syed, A. Katsoyiannis, et al., Environ. Res. 152 (2017) 26-42  doi: 10.1016/j.envres.2016.09.024

    40. [40]

      J. Cristale, A. Katsoyiannis, A. Sweetman, K.C. Jones, S. Lacorte, Environ. Pollut. 179 (2013) 194-200  doi: 10.1016/j.envpol.2013.04.001

    41. [41]

      L. Chen, Pollution characteristics of polybrominated two phenyl ethers and organic phosphate esters in sediments of Shanghai. Shanghai University (2015)

    42. [42]

      J.H. He, J. F. Li, L.Y. Ma, et al., Sci. Total. Environ. 697 (2019) 133997.1-133997.11  doi: 10.1016/j.scitotenv.2019.133997

    43. [43]

      J. Regnery, W. Püttmann, Water Res. 44 (2010) 4097-4104  doi: 10.1016/j.watres.2010.05.024

    44. [44]

      L.F. Liu, L.J. Zhang, X.L. Zhang, Periodical of Ocean University of China 36 (2006) 126-130

    45. [45]

      US EPA, Estimation Programs Interface Suite TM for Microsoft ®Windows, Vol 4.11, Washington, DC, U. S. A., 2012.

    46. [46]

      S.B. Hawthorne, C.B. Grabanski, D.J. Miller, Environ. Toxicol. Chem. 25 (2006) 2901-2911  doi: 10.1897/06-115R.1

    47. [47]

      J. Hodson, N.A. Williams, Chemosphere 17 (1988) 67-77  doi: 10.1016/0045-6535(88)90045-8

  • 加载中
    1. [1]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    2. [2]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    3. [3]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    4. [4]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    5. [5]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    6. [6]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    7. [7]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

Metrics
  • PDF Downloads(5)
  • Abstract views(769)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return