Role of MXene surface terminations in electrochemical energy storage: A review
-
* Corresponding authors. E-mail addresses: panlong@seu.edu.cn (Long Pan), zmsun@seu.edu.cn
(Zhengming Sun).
Citation:
Zhuoheng Bao, Chengjie Lu, Xin Cao, Peigen Zhang, Li Yang, Heng Zhang, Dawei Sha, Wei He, Wei Zhang, Long Pan, Zhengming Sun. Role of MXene surface terminations in electrochemical energy storage: A review[J]. Chinese Chemical Letters,
;2021, 32(9): 2648-2658.
doi:
10.1016/j.cclet.2021.02.012
S.Z. Butler, S.M. Hollen, L.Y. Cao, et al., ACS Nano 7(2013) 2898-2926.
doi: 10.1021/nn400280c
M.S. Xu, T. Liang, M.M. Shi, et al., Chem. Rev. 113(2013) 3766-3798.
doi: 10.1021/cr300263a
M. Chhowalla, H.S. Shin, G. Eda, et al., Nat. Chem. 5(2013) 263-275.
doi: 10.1038/nchem.1589
H. Zhang, ACS Nano 9(2015) 9451-9469.
doi: 10.1021/acsnano.5b05040
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306(2004) 666-669.
doi: 10.1126/science.1102896
D. Golberg, Y. Bando, Y. Huang, et al., ACS Nano 4(2010) 2979-2993.
doi: 10.1021/nn1006495
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, et al., Nat. Nanotechnol. 7(2012) 699-712.
doi: 10.1038/nnano.2012.193
P. Vogt, P. De Padova, C. Quaresima, et al., Phys. Rev. Lett. 108(2012) 155501.
doi: 10.1103/PhysRevLett.108.155501
E. Bianco, S. Butler, S.S. Jiang, et al., ACS Nano 7(2013) 4414-4421.
doi: 10.1021/nn4009406
H.O. Churchill, P. Jarillo-Herrero, Nat. Nanotechnol. 9(2014) 330-331.
doi: 10.1038/nnano.2014.85
M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23(2011) 4248-4253.
doi: 10.1002/adma.201102306
Babak Anasori, Y. Gogotsi, 2D Metal Carbides and Nitrides (MXenes), Springer, Cham, 2019.
O. Mashtalir, M. Naguib, B. Dyatkin, et al., Mater. Chem. Phys. 139(2013) 147-152.
doi: 10.1016/j.matchemphys.2013.01.008
M.A. Hope, A.C. Forse, K.J. Griffith, et al., Phys. Chem. Chem. Phys. 18(2016) 5099-5102.
doi: 10.1039/C6CP00330C
T. Hu, J. Wang, H. Zhang, et al., Phys. Chem. Chem. Phys. 17(2015) 9997-10003.
doi: 10.1039/C4CP05666C
G.R. Berdiyorov, AIP Adv. 6(2016) 055105.
doi: 10.1063/1.4948799
Q. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc. 134(2012) 16909-16916.
doi: 10.1021/ja308463r
S. Lai, J. Jeon, S.K. Jang, et al., Nanoscale 7(2015) 19390-19396.
doi: 10.1039/C5NR06513E
C. Si, J. Zhou, Z. Sun, ACS Appl. Mater. Interfaces 7(2015) 17510-17515.
doi: 10.1021/acsami.5b05401
C. Si, K.H. Jin, J. Zhou, et al., Nano Lett. 16(2016) 6584-6591.
doi: 10.1021/acs.nanolett.6b03118
C. Eames, M.S. Islam, J. Am. Chem. Soc. 136(2014) 16270-16276.
doi: 10.1021/ja508154e
I. Persson, A. El Ghazaly, Q. Tao, et al., Small 14(2018) 1703676.
doi: 10.1002/smll.201703676
J. Halim, J. Palisaitis, J. Lu, et al., ACS Appl. Nano Mater. 1(2018) 2455-2460.
doi: 10.1021/acsanm.8b00332
R. Meshkian, M. Dahlqvist, J. Lu, et al., Adv. Mater. 30(2018) 1706409.
doi: 10.1002/adma.201706409
M. Naguib, O. Mashtalir, J. Carle, et al., ACS Nano 6(2012) 1322-1331.
doi: 10.1021/nn204153h
M. Naguib, J. Halim, J. Lu, et al., J. Am. Chem. Soc. 135(2013) 15966-15969.
doi: 10.1021/ja405735d
J. Halim, S. Kota, M.R. Lukatskaya, et al., Adv. Funct. Mater. 26(2016) 3118-3127.
doi: 10.1002/adfm.201505328
B. Anasori, Y. Xie, M. Beidaghi, et al., ACS Nano 9(2015) 9507-9516.
doi: 10.1021/acsnano.5b03591
R. Meshkian, Q. Tao, M. Dahlqvist, et al., Acta Mater. 125(2017) 476-480.
doi: 10.1016/j.actamat.2016.12.008
J. Zhou, X. Zha, F.Y. Chen, et al., Angew. Chem. Int. Ed. 55(2016) 5008-5013.
doi: 10.1002/anie.201510432
J. Zhou, X. Zha, X. Zhou, et al., ACS Nano 11(2017) 3841-3850.
doi: 10.1021/acsnano.7b00030
M.H. Tran, T. Schäfer, A. Shahraei, et al., ACS Appl. Energ. Mater. 1(2018) 3908-3914.
doi: 10.1021/acsaem.8b00652
M. Ghidiu, M. Naguib, C. Shi, et al., Chem. Commun. (Camb. ) 50(2014) 9517-9520.
doi: 10.1039/C4CC03366C
J. Yang, M. Naguib, M. Ghidiu, et al., J. Am. Ceram. Soc. 99(2016) 660-666.
doi: 10.1111/jace.13922
X. Zhang, Z. Zhang, Z. Zhou, J. Energy Chem. 27(2018) 73-85.
doi: 10.1016/j.jechem.2017.08.004
M. Alhabeb, K. Maleski, T.S. Mathis, et al., Angew. Chem. Int. Ed. 57(2018) 5444-5448.
doi: 10.1002/anie.201802232
A. Gentile, C. Ferrara, S. Tosoni, et al., Small Methods 4(2020) 2000314.
doi: 10.1002/smtd.202000314
J. Luo, W. Zhang, H. Yuan, et al., ACS Nano 11(2017) 2459-2469.
doi: 10.1021/acsnano.6b07668
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, et al., Nature 516(2014) 78-81.
doi: 10.1038/nature13970
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, et al., Adv. Electron. Mater. 2(2016) 1600255.
doi: 10.1002/aelm.201600255
F. Liu, A. Zhou, J. Chen, et al., Appl. Surf. Sci. 416(2017) 781-789.
doi: 10.1016/j.apsusc.2017.04.239
S. Kajiyama, L. Szabova, H. Iinuma, et al., Adv. Energy Mater. 7(2017) 1601873.
doi: 10.1002/aenm.201601873
Z. Li, L. Wang, D. Sun, et al., Mater. Sci. Eng. B 191(2015) 33-40.
doi: 10.1016/j.mseb.2014.10.009
G. Ying, A.D. Dillon, A.T. Fafarman, et al., Mater. Res. Lett. 5(2017) 391-398.
doi: 10.1080/21663831.2017.1296043
F. Liu, J. Zhou, S. Wang, et al., J. Electrochem. Soc. 164(2017) A709-A713.
doi: 10.1149/2.0641704jes
S. Yazdanparast, S. Soltanmohammad, A. Fash-White, et al., ACS Appl. Mater. Interfaces 12(2020) 20129-20137.
doi: 10.1021/acsami.0c03181
B. Soundiraraju, B.K. George, ACS Nano 11(2017) 8892-8900.
doi: 10.1021/acsnano.7b03129
X. Li, J. Hao, R. Liu, et al., Energy Storage Mater. 33(2020) 62-70.
doi: 10.1016/j.ensm.2020.05.004
F. Li, Y.L. Liu, G.G. Wang, et al., J. Mater. Chem. A: Mater. Energy Sustain. 7(2019) 22631-22641.
doi: 10.1039/C9TA08144E
C. Cui, R. Cheng, H. Zhang, et al., Adv. Funct. Mater. 30(2020) 2000693.
doi: 10.1002/adfm.202000693
Q. Guo, X. Zhang, F. Zhao, et al., ACS Nano 14(2020) 2788-2797.
doi: 10.1021/acsnano.9b09802
J. Halim, M.R. Lukatskaya, K.M. Cook, et al., Chem. Mater. 26(2014) 2374-2381.
doi: 10.1021/cm500641a
A. Feng, Y. Yu, F. Jiang, et al., Ceram. Int. 43(2017) 6322-6328.
doi: 10.1016/j.ceramint.2017.02.039
V. Natu, R. Pai, M. Sokol, et al., Chem 6(2020) 616-630.
doi: 10.1016/j.chempr.2020.01.019
P. Urbankowski, B. Anasori, T. Makaryan, et al., Nanoscale 8(2016) 11385-11391.
doi: 10.1039/C6NR02253G
M. Li, J. Lu, K. Luo, et al., J. Am. Chem. Soc. 141(2019) 4730-4737.
doi: 10.1021/jacs.9b00574
Y. Li, H. Shao, Z. Lin, et al., Nat. Mater. 19(2020) 894-899.
doi: 10.1038/s41563-020-0657-0
V. Kamysbayev, A.S. Filatov, H. Hu, et al., Science 369(2020) 979-983.
doi: 10.1126/science.aba8311
G. Li, L. Tan, Y. Zhang, et al., Langmuir 33(2017) 9000-9006.
doi: 10.1021/acs.langmuir.7b01339
T. Li, L. Yao, Q. Liu, et al., Angew. Chem. Int. Ed. 57(2018) 6115-6119.
doi: 10.1002/anie.201800887
W. Sun, S.A. Shah, Y. Chen, et al., J. Mater. Chem. A: Mater. Energy Sustain. 5(2017) 21663-21668.
doi: 10.1039/C7TA05574A
S. Yang, P. Zhang, F. Wang, et al., Angew. Chem. Int. Ed. 57(2018) 15491-15495.
doi: 10.1002/anie.201809662
S.Y. Pang, Y.T. Wong, S. Yuan, et al., J. Am. Chem. Soc. 141(2019) 9610-9616.
doi: 10.1021/jacs.9b02578
J. Mei, G.A. Ayoko, C. Hu, et al., Sustain. Mater. Technol. 25(2020) e00156.
J. Mei, G.A. Ayoko, C. Hu, et al., Chem. Eng. J. 395(2020) 125111.
doi: 10.1016/j.cej.2020.125111
X.H. Zha, K. Luo, Q. Li, et al., Europhys. Lett. 111(2015) 26007.
doi: 10.1209/0295-5075/111/26007
A.N. Enyashin, A.L. Ivanovskii, J. Phys. Chem. C 117(2013) 13637-13643.
doi: 10.1021/jp401820b
A. Champagne, L. Shi, T. Ouisse, et al., Phys. Rev. B 97(2018) 115439.
doi: 10.1103/PhysRevB.97.115439
M. Khazaei, M. Arai, T. Sasaki, et al., Adv. Funct. Mater. 23(2013) 2185-2192.
doi: 10.1002/adfm.201202502
M. Khazaei, M. Arai, T. Sasaki, et al., Phys. Chem. Chem. Phys. 16(2014) 7841-7849.
doi: 10.1039/C4CP00467A
M. Khazaei, A. Ranjbar, M. Arai, et al., J. Mater. Chem. C: Mater. Opt. Electron. Devices 5(2017) 2488-2503.
doi: 10.1039/C7TC00140A
H. Weng, A. Ranjbar, Y. Liang, et al., Phys. Rev. B 92(2015) 075436.
doi: 10.1103/PhysRevB.92.075436
M. Khazaei, A. Ranjbar, M. Ghorbani-Asl, et al., Phys. Rev. B 93(2016) 205125.
doi: 10.1103/PhysRevB.93.205125
Y. Wang, M. Zhou, L.C. Xu, et al., J. Power Sources 451(2020) 227791.
doi: 10.1016/j.jpowsour.2020.227791
Y. Wang, J. Shen, L.C. Xu, et al., Phys. Chem. Chem. Phys. 21(2019) 18559-18568.
doi: 10.1039/C9CP03419F
J. Hu, B. Xu, C. Ouyang, et al., J. Phys. Chem. C 118(2014) 24274-24281.
doi: 10.1021/jp507336x
B. Yan, C. Lu, P. Zhang, et al., Mater. Today Commun. 22(2020) 100713.
doi: 10.1016/j.mtcomm.2019.100713
V. Mehta, H.S. Saini, S. Srivastava, et al., J. Phys. Chem. C 123(2019) 25052-25060.
doi: 10.1021/acs.jpcc.9b05679
V. Shukla, N.K. Jena, S.R. Naqvi, et al., Nano Energy 58(2019) 877-885.
doi: 10.1016/j.nanoen.2019.02.007
S. Lee, S.C. Jung, Y.K. Han, Nanoscale 12(2020) 5324-5331.
doi: 10.1039/C9NR08906C
N. Li, Y. Li, X. Zhu, et al., J. Phys. Chem. C 124(2020) 14978-14986.
doi: 10.1021/acs.jpcc.0c02968
Y. Xie, M. Naguib, V.N. Mochalin, et al., J. Am. Chem. Soc. 136(2014) 6385-6394.
doi: 10.1021/ja501520b
Q. Meng, J. Ma, Y. Zhang, et al., Nanoscale 10(2018) 3385-3392.
doi: 10.1039/C7NR07649E
X. Wang, S. Kajiyama, H. Iinuma, et al., Nat. Commun. 6(2015) 6544.
doi: 10.1038/ncomms7544
Y. Ando, M. Okubo, A. Yamada, et al., Adv. Funct. Mater. 30(2020) 2000820.
doi: 10.1002/adfm.202000820
L. Wang, J. Wang, Z. Zhang, et al., J. Mater. Chem. A: Mater. Energy Sustain. 7(2019) 16231-16238.
doi: 10.1039/C9TA03529J
M. Naguib, J. Come, B. Dyatkin, et al., Electrochem. commun. 16(2012) 61-64.
doi: 10.1016/j.elecom.2012.01.002
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, et al., Science 341(2013) 1502-1505.
doi: 10.1126/science.1241488
P. Lian, Y. Dong, Z.S. Wu, et al., Nano Energy 40(2017) 1-8.
doi: 10.1016/j.nanoen.2017.08.002
F. Kong, X. He, Q. Liu, et al., Electrochim. Acta 265(2018) 140-150.
doi: 10.1016/j.electacta.2018.01.196
M. Lu, H. Li, W. Han, et al., J. Energy Chem. 31(2019) 148-153.
doi: 10.1016/j.jechem.2018.05.017
Y. Wang, C. Ma, W. Ma, et al., 2d Mater. 6(2019) 045025.
doi: 10.1088/2053-1583/ab30f9
A. Varzi, L. Mattarozzi, S. Cattarin, et al., Adv. Energy Mater. 8(2018) 1701706.
doi: 10.1002/aenm.201701706
S. Kajiyama, L. Szabova, K. Sodeyama, et al., ACS Nano 10(2016) 3334-3341.
doi: 10.1021/acsnano.5b06958
J. Luo, X. Tao, J. Zhang, et al., ACS Nano 10(2016) 2491-2499.
doi: 10.1021/acsnano.5b07333
J. Luo, J. Zheng, J. Nai, et al., Adv. Funct. Mater. 29(2019) 1808107.
doi: 10.1002/adfm.201808107
J. Li, D. Yan, S. Hou, et al., J. Mater. Chem. A: Mater. Energy Sustain. 6(2018) 1234-1243.
doi: 10.1039/C7TA08261D
R. Liu, W. Cao, D. Han, et al., J. Alloys. Compd. 793(2019) 505-511.
doi: 10.1016/j.jallcom.2019.03.209
X. Liang, A. Garsuch, L.F. Nazar, Angew. Chem. Int. Ed. 54(2015) 3907-3911.
doi: 10.1002/anie.201410174
D. Rao, L. Zhang, Y. Wang, et al., J. Phys. Chem. C 121(2017) 11047-11054.
doi: 10.1021/acs.jpcc.7b00492
X. Liu, X. Shao, F. Li, et al., Appl. Surf. Sci. 455(2018) 522-526.
doi: 10.1016/j.apsusc.2018.05.200
W. Bao, L. Liu, C. Wang, et al., Adv. Energy Mater. 8(2018) 1702485.
doi: 10.1002/aenm.201702485
M. Hu, Z. Li, T. Hu, et al., ACS Nano 10(2016) 11344-11350.
doi: 10.1021/acsnano.6b06597
M.R. Lukatskaya, S.M. Bak, X. Yu, et al., Adv. Energy Mater. 5(2015) 1500589.
doi: 10.1002/aenm.201500589
X. Zang, J. Wang, Y. Qin, et al., Nano-Micro Lett. 12(2020) 77.
doi: 10.1007/s40820-020-0415-5
J. Li, X. Yuan, C. Lin, et al., Adv. Energy Mater. 7(2017) 1602725.
doi: 10.1002/aenm.201602725
X. Zhang, Y. Liu, S. Dong, et al., Electrochim. Acta 294(2019) 233-239.
doi: 10.1016/j.electacta.2018.10.096
C. Lu, L. Yang, B. Yan, et al., Adv. Funct. Mater. 30(2020) 2000852.
doi: 10.1002/adfm.202000852
Y. Wen, T.E. Rufford, X. Chen, et al., Nano Energy 38(2017) 368-376.
doi: 10.1016/j.nanoen.2017.06.009
H. Li, X. Wang, H. Li, et al., J. Alloy. Compds. 784(2019) 923-930.
doi: 10.1016/j.jallcom.2019.01.111
Y. Tian, W. Que, Y. Luo, et al., J. Mater. Chem. A: Mater. Energy Sustain. 7(2019) 5416-5425.
doi: 10.1039/C9TA00076C
Y. Tang, J. Zhu, W. Wu, et al., J. Electrochem. Soc. 164(2017) A923-A929.
doi: 10.1149/2.0041706jes
C. Yang, W. Que, X. Yin, et al., Electrochim. Acta 225(2017) 416-424.
doi: 10.1016/j.electacta.2016.12.173
C. Yang, W. Que, Y. Tang, et al., J. Electrochem. Soc. 164(2017) A1939-A1945.
doi: 10.1149/2.1091709jes
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Jun-Ming Cao , Kai-Yang Zhang , Jia-Lin Yang , Zhen-Yi Gu , Xing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Shaohua Zhang , Xiaojuan Dai , Wei Hao , Liyao Liu , Yingqiao Ma , Ye Zou , Jia Zhu , Chong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482