Citation: Ziyu Gan, Xiaolong Zhu, Qiuli Yan, Xiuyan Song, Daoshan Yang. Oxidative dual C–H sulfenylation: A strategy for the synthesis of bis (imidazo [1, 2-a]pyridin-3-yl)sulfanes under metal-free conditions using sulfur powder[J]. Chinese Chemical Letters, ;2021, 32(5): 1705-1708. doi: 10.1016/j.cclet.2020.12.046 shu

Oxidative dual C–H sulfenylation: A strategy for the synthesis of bis (imidazo [1, 2-a]pyridin-3-yl)sulfanes under metal-free conditions using sulfur powder

    * Corresponding author.
    E-mail address: yangdaoshan@tsinghua.org.cn (D. Yang).
  • Received Date: 21 October 2020
    Revised Date: 20 December 2020
    Accepted Date: 23 December 2020
    Available Online: 28 December 2020

Figures(6)

  • An efficient approach to sulfur-bridged imidazopyridines has been developed under metal-free conditions using inexpensive sulfur powder as the sulfur source. Most appealingly, the reaction can proceed smoothly without addition of any additives, ultimately decreasing the production of chemical waste. The inexpensive and green method should provide a useful strategy for constructing a library of novel and biological interesting heteroaromatic sulfides.
  • 加载中
    1. [1]

      (a) M.D. McReynolds, J.M. Dougherty, P.R. Hanson, Chem. Rev. 104 (2004) 2239-2258;
      (b) H. Liu, X.F. Jiang, Chem. Asian J. 8 (2013) 2546-2563.

    2. [2]

      C. Shen, P.F. Zhang, Q. Sun, et al., Chem. Soc. Rev. 44(2015) 291-314.  doi: 10.1039/C4CS00239C

    3. [3]

      (a) A. Ghaderi, Tetrahedron 72 (2016) 4758-4782;
      (b) X.M. Xu, D.M. Chen, Z.L. Wang, Chin. Chem. Lett. 31 (2020) 49-57;
      (c) L.L. Wang, M. Zhang, Y.L. Zhang, et al., Chin. Chem. Lett. 31 (2020) 67-70;
      (d) Y.Q. Jiang, J. Li, Z.W. Feng, et al., Adv. Synth. Catal. 362 (2020) 2609-2614;
      (e) Z. Wang, W.M. He, Chin. J. Org. Chem. 39 (2019) 3594-3595.

    4. [4]

      I.P. Beletskaya, V.P. Ananikov, Chem. Rev. 111(2011) 1596-1636.  doi: 10.1021/cr100347k

    5. [5]

      (a) Z. Gan, Q. Yan, G. Li, et al., Adv. Synth. Catal. 361 (2019) 4558-4567;
      (b) X. Wang, Q. Wang, Y. Xue, et al., Chem. Commun. 56 (2020) 4436-4439.

    6. [6]

      C. Ravi, S. Adimurthy, Chem. Rec. 17(2017) 1019-1038.  doi: 10.1002/tcr.201600146

    7. [7]

      (a) F.J. Chen, G. Liao, X. Li, J. Wu, B.F. Shi, Org. Lett. 16 (2014) 5644-5647;
      (b) C. Chen, L.L. Chu, F.L. Qing, J. Am. Chem. Soc. 134 (2012) 12454-12457.

    8. [8]

      T.B. Nguyen, Adv. Synth. Catal. 359(2017) 1066-1130.  doi: 10.1002/adsc.201601329

    9. [9]

      (a) L. Dyminska, Bioorg. Med. Chem. 23 (2015) 6087-6099;
      (b) A.J. Stasyuk, M. Banasiewicz, M.K. Cyranski, D.T. Gryko, J. Org. Chem. 77 (2012) 5552-5558;
      (c) H. Iida, R. Demizu, R. Ohkado, J. Org. Chem. 83 (2018) 12291-12296;
      (d) S. Ulloora, A.V. Adhikari, R. Shabaraya, Chin. Chem. Lett. 24 (2013) 853-856.

    10. [10]

      L.A. Sorbera, J. Castaner, P.A. Leeson, Drugs Future 27(2002) 935-941.  doi: 10.1358/dof.2002.027.10.701186

    11. [11]

      L. Almirante, L. Polo, A. Mugnaini, et al., J. Med. Chem. 8(1965) 305-312.  doi: 10.1021/jm00327a007

    12. [12]

      S.Z. Langer, S. Arbilla, J. Benavides, B. Scatton, Adv. Biochem. Psychopharmacol. 46(1990) 61.
       

    13. [13]

      C. Hamdouchi, J. de Blas, M. del Prado, et al., J. Med. Chem. 42(1999) 50-59.  doi: 10.1021/jm9810405

    14. [14]

      T. Guo, X.N. Wei, M. Zhang, et al., Chem. Commun. 56(2020) 5751-5754.  doi: 10.1039/D0CC00043D

    15. [15]

      Y. Kawai, S. Satoh, H. Yamazaki, N. Kayakiri, K. Yoshihara, T. Oku, Patent, WO-9634866-A1, 1995.

    16. [16]

      (a) J. Koubachi, S.E. Kazzouli, M. Bousmina, G. Guillaumet, Eur. J. Org. Chem. 24 (2014) 5119-5138;
      (b) Q. Cai, M.C. Liu, B.M. Mao, et al., Chin. Chem. Lett. 26 (2015) 881-884;
      (c) A.K. Bagdi, S. Santra, K. Monir, A. Hajra, Chem. Commun. 51 (2015) 1555-1575;
      (d) A.K. Bagdi, M. Rahman, S. Santra, A. Majee, A. Hajra, Adv. Synth. Catal. 355 (2013) 1741-1747;
      (e) X.Y. Li, Y. Liu, X.L. Chen, et al., Green Chem. 22 (2020) 4445-4449;
      (f) S. Santra, A.K. Bagdi, A. Majee, A. Hajra, Adv. Synth. Catal. 355 (2013) 1065-1070;
      (g) K. Groebke, L. Weber, F. Mehlin, Synlett 6 (1998) 661-663;
      (h) C. He, J. Hao, H. Xu, et al., Chem. Commun. 48 (2012) 11073-11075;
      (i) F. Gao, K. Sun, X.L. Chen, et al., J. Org. Chem. 85 (2020) 14744-14752;
      (j) G. Kibriya, A.K. Bagdi, A. Hajra, J. Org. Chem. 83 (2018) 10619-10626;
      (k) M. Singsardar, S. Mondal, S. Laru, A. Hajra, Org. Lett. 21 (2019) 5606-5610;
      (l) L.J. Ma, X.P. Wang, W. Yu, B. Han, Chem. Commun. 47 (2011) 11333-11335.

    17. [17]

      (a) H. Cao, S. Lei, N.Y. Li, et al., Chem. Commun. 51 (2015) 1823-1825;
      (b) G. Kibriya, S. Samanta, S. Jana, S. Mondal, A. Hajra, J. Org. Chem. 82 (2017) 13722-13727;
      (c) Y.J. Guo, S. Lu, L.L. Tian, et al., J. Org. Chem. 83 (2018) 338-349;
      (d) F. Shibahara, T. Kanai, E. Yamaguchi, et al., Chem. Asian J. 9 (2014) 237-244;
      (e) L.L. Tian, S. Lu, Z.H. Zhang, et al., J. Org. Chem. 84 (2019) 5213-5221;
      (f) S.M. Abdul Shakoor, D.S. Agarwal, S. Khullar, S.K. Mandal, R. Sakhuja, Chem. Asian J. 12 (2017) 3061-3068;
      (g) M. Yadav, S. Dara, V. Saikam, et al., Eur. J. Org. Chem. 29 (2015) 6526-6533;
      (h) S. Mondal, S. Samanta, S. Jana, A. Hajra, J. Org. Chem. 82 (2017) 4504-4510;
      (i) G.H. Xiao, H. Min, Z.L. Zheng, G.B. Deng, Y. Liang, Chin. Chem. Lett. 29 (2018) 1363-1366;
      (j) K. Sun, X. Wang, C. Li, H. Wang, L. Li, Org. Chem. Front. 7 (2020) 3100-3119.

    18. [18]

      M. Shiri, M.A. Zolfigol, H.G. Kruger, Z. Tanbakouchian, Chem. Rev. 110(2000) 2250-2293.  doi: 10.1016/B978-0-12-385464-3.00002-9

    19. [19]

      (a) G. Li, Z. Gan, K. Kong, X. Dou, D. Yang, Adv. Synth. Catal. 361 (2019) 1808-1814;
      (b) G. Li, Q. Yan, X. Gong, X. Dou, D. Yang, ACS Sustainable Chem. Eng. 7 (2019) 14009-14015;
      (c) G. Li, G. Zhang, X. Deng, et al., Org. Biomol. Chem. 16 (2018) 8015-8019;
      (d) X. Gong, G. Li, Z. Gan, et al., Asian J. Org. Chem. 8 (2019) 1472-1478;
      (e) G. Li, Q. Yan, Z. Gan, Q. Li, D. Yang, Org. Lett. 21 (2019) 7938-7942;
      (f) Z. Gan, G. Li, X. Yang, et al., Sci. China Chem. 63 (2020) 1652-1658.

    20. [20]

      Y.S. Zhu, Y.T. Xue, W.N. Liu, et al., J. Org. Chem. 85(2020) 9106-9116.  doi: 10.1021/acs.joc.0c01035

    21. [21]

      (a) T.B. Nguyen, L. Ermolenko, P. Retailleau, A. Al-Mourabit, Angew. Chem. Int. Ed. 53 (2014) 13808-13812;
      (b) H. Xie, J. Cai, Z. Wang, H. Huang, G.J. Deng, Org. Lett. 18 (2016) 2196-2199;
      (c) Y. Yang, W. Li, B. Ying, et al., ChemCatChem 8 (2016) 2916-2919.

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    4. [4]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    5. [5]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    6. [6]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    10. [10]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    11. [11]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    12. [12]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    13. [13]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    14. [14]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    15. [15]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    16. [16]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    17. [17]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    18. [18]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    19. [19]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    20. [20]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

Metrics
  • PDF Downloads(20)
  • Abstract views(959)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return