3D ordered macro-/mesoporous NixCo100-x alloys as high-performance bifunctional electrocatalysts for overall water splitting
- Corresponding author: Lianbin Xu, xulb@mail.buct.edu.cn
Citation:
Chenhui Niu, Yixin Zhang, Jing Dong, Ruixue Yuan, Wei Kou, Lianbin Xu. 3D ordered macro-/mesoporous NixCo100-x alloys as high-performance bifunctional electrocatalysts for overall water splitting[J]. Chinese Chemical Letters,
;2021, 32(8): 2484-2488.
doi:
10.1016/j.cclet.2020.12.045
M.I. Jamesh, J. Power Sources 333 (2016) 213-236.
doi: 10.1016/j.jpowsour.2016.09.161
H.T. Wang, H.W. Lee, Y. Deng, et al., Nat. Commun. 6 (2015) 7261-7268.
doi: 10.1038/ncomms8261
J. Yin, Y.X. Li, F. Lv, et al., Adv. Mater. 29 (2017) 1704681.
doi: 10.1002/adma.201704681
Z.W. Zhuang, Y. Wang, C.Q. Xu, et al., Nat. Commun. 10 (2019) 4875-4885.
doi: 10.1038/s41467-019-12885-0
K. Lan, X. Wang, H.D. Yang, et al., ChemElectroChem 5 (2018) 2256-2262.
doi: 10.1002/celc.201800299
D. Ansovini, C.J.J. Lee, C.S. Chua, et al., J. Mater. Chem. A 4 (2016) 9744-9749.
doi: 10.1039/C6TA00540C
X. Jian, S. Li, J.Z. Liu, et al., ChemElectroChem 6 (2019) 5407-5412.
doi: 10.1002/celc.201901420
D. Friebel, M.W. Louie, M. Bajdich, et al., J. Am. Chem. Soc. 137 (2015) 1305-1313.
doi: 10.1021/ja511559d
G.T. Fu, X.X. Yan, Y.F. Chen, et al., Adv. Mater. 30 (2018) 1704609.
doi: 10.1002/adma.201704609
C. Yu, J.J. Lu, L. Luo, et al., Electrochim. Acta 301 (2019) 449-457.
doi: 10.1016/j.electacta.2019.01.149
Q. Zhang, P.S. Li, D.J. Zhou, et al., Small 13 (2017) 1701648.
doi: 10.1002/smll.201701648
Y.Q. Ji, J.Q. Xie, Y. Yang, et al., Chin. Chem. Lett. 31 (2020) 855-858.
doi: 10.1016/j.cclet.2019.06.021
A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 26 (2016) 4661-4672.
doi: 10.1002/adfm.201600566
X.H. Gao, H.X. Zhang, Q.G. Li, et al., Angew. Chem. Int. Ed. 55 (2016) 6290-6294.
doi: 10.1002/anie.201600525
X.W. Wei, X.M. Zhou, K.L. Wu, Y. Chen, CrystEngComm 13 (2011) 1328-1332.
doi: 10.1039/C0CE00468E
W. Kou, Y.X. Zhang, J. Dong, et al., ACS Appl. Energy Mater. 3 (2020) 1875-1882.
doi: 10.1021/acsaem.9b02324
Y. Zhou, H.C. Zeng, Small 14 (2018) 1704403.
doi: 10.1002/smll.201704403
Z.S. Li, B.L. Li, J.M. Chen, Q. Pang, P.K. Shen, Int. J. Hydrogen Energy 44 (2019) 16120-16131.
doi: 10.1016/j.ijhydene.2019.04.219
J.F. Zhang, Y. Li, T.Y. Zhu, et al., ACS Appl. Mater. Interfaces 10 (2018) 31330-31339.
doi: 10.1021/acsami.8b09361
A.M. Lázaro, A.R. Zavala, F.I.E. Lagunes, et al., J. Power Sources 412 (2019) 505-513.
doi: 10.1016/j.jpowsour.2018.11.073
R.C. Schroden, M. Al-Daous, C.F. Blanford, A. Stein, Chem. Mater. 14 (2002) 3305-3315.
doi: 10.1021/cm020100z
G.S. Attard, P.N. Bartlett, N.R.B. Coleman, et al., Science 278 (1997) 838-840.
doi: 10.1126/science.278.5339.838
Y. Yamauchi, T. Yokoshima, T. Momma, T. Osaka, K. Kuroda, J. Mater. Chem. 14 (2004) 2935-2940.
doi: 10.1039/B406265E
K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al., Pure Appl. Chem. 57 (1985) 603-619.
doi: 10.1351/pac198557040603
Y. Yamauchi, T. Yokoshima, H. Mukaibo, et al., Chem. Lett. 33 (2004) 542-543.
doi: 10.1246/cl.2004.542
Y. Yamauchi, M. Komatsu, M. Fuziwara, et al., Angew. Chem. Int. Ed. 48 (2009) 7792-7797.
doi: 10.1002/anie.200902934
C. Tang, N.Y. Cheng, Z.H. Pu, W. Xing, X.P. Sun, Angew. Chem. Int. Ed. 54 (2015) 9351-9355.
doi: 10.1002/anie.201503407
H.L. Lin, Z.P. Shi, S.N. He, et al., Chem. Sci. 7 (2016) 3399-3405.
doi: 10.1039/C6SC00077K
N. Krstajic, M. Popovic, B. Grgur, M. Vojnovic, D. Sepa, J. Electroanal. Chem. 512 (2001) 16-26.
doi: 10.1016/S0022-0728(01)00590-3
L. Negahdar, F. Zeng, S. Palkovits, C. Broicher, R. Palkovits, ChemElectroChem 6 (2019) 5588-5595.
doi: 10.1002/celc.201901265
J.Y. Xu, T.F. Liu, J.J. Li, et al., Energy Environ. Sci. 11 (2018) 1819-1827.
doi: 10.1039/C7EE03603E
X. Xu, H.F. Liang, F.W. Ming, et al., ACS Catal. 7 (2017) 6394-6399.
doi: 10.1021/acscatal.7b02079
F.W. Ming, H.F. Liang, H.H. Shi, et al., J. Mater. Chem. A 4 (2016) 15148-15155.
doi: 10.1039/C6TA06496E
C. Huang, T. Ouyang, Y. Zou, N. Li, Z.Q. Liu, J. Mater. Chem. A 6 (2018) 7420-7427.
doi: 10.1039/C7TA11364A
Y.Q. Wang, B.H. Zhang, W. Pan, H.Y. Ma, J.T. Zhang, ChemSusChem 10 (2017) 4170-4177.
doi: 10.1002/cssc.201701456
T.T. Sun, L.B. Xu, Y.S. Yan, et al., ACS Catal. 6 (2016) 1446-1450.
doi: 10.1021/acscatal.5b02571
X.E. Liu, W. Liu, M. Ko, et al., Adv. Funct. Mater. 25 (2015) 5799-5808.
doi: 10.1002/adfm.201502217
S. Rafai, C. Qiao, Z.T. Wang, et al., ChemElectroChem 6 (2019) 5469-5478.
doi: 10.1002/celc.201901363
B. Subramanya, Y. Ullal, S.U. Shenoy, D.K. Bhat, A.C. Hedge, RSC Adv. 5 (2015) 47398-47407.
doi: 10.1039/C5RA07627G
A. Jayakumar, R. P. Antony, R.H. Wang, J.M. Lee, Small 13 (2017) 1603102.
doi: 10.1002/smll.201603102
X.D. Zhang, Y. Li, Y.K. Guo, et al., Int. J. Hydrogen Energy 44 (2019) 29946-29955.
doi: 10.1016/j.ijhydene.2019.09.193
L. Zhao, Y. Zhang, Z.L. Zhao, et al., Natl. Sci. Rev. 7 (2020) 27-36.
doi: 10.1093/nsr/nwz145
X.E. Liu, W. Liu, M.S. Park, et al., Adv. Funct. Mater. 25 (2015) 5799-5808.
doi: 10.1002/adfm.201502217
M. Gong, W. Zhou, M.C. Tsai, et al., Nat. Commun. 5 (2014) 4695.
doi: 10.1038/ncomms5695
Q. Zhang, C. Ye, X.L. Li, et al., ACS Appl. Mater. Interfaces 10 (2018) 27723-27733.
doi: 10.1021/acsami.8b04386
I. H. Kwak, H.S. Im, D.M. Jang, et al., ACS Appl. Mater. Interfaces 8 (2016) 5327-5334.
doi: 10.1021/acsami.5b12093
C.L. Xiao, Y.B. Li, X.Y. Lu, C. Zhao, Adv. Funct. Mater. 26 (2016) 3515-3523.
doi: 10.1002/adfm.201505302
C.W. Zhang, H. Yang, T.T. Sun, et al., J. Power Sources 245 (2014) 579-582.
doi: 10.1016/j.jpowsour.2013.06.162
J. Dong, T.T. Sun, S.Y. Li, et al., J. Colloid Interf. Sci. 554 (2019) 177-182.
doi: 10.1016/j.jcis.2019.06.087
R.P. Antony, A. K. Satpati, K. Bhattacharyya, B.N. Jagatap, Adv. Mater. Interf. 3 (2016) 1600632.
doi: 10.1002/admi.201600632
S. Barwe, C. Andronescu, E. Vasile, J. Masa, W. Schuhmann, Electrochem. Commun. 79 (2017) 41-45.
doi: 10.1016/j.elecom.2017.04.014
W.Z. Cai, R. Chen, H.B. Yang, et al., Nano Lett. 20 (2020) 4278-4285.
doi: 10.1021/acs.nanolett.0c00840
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Zuyou Song , Yong Jiang , Qiao Gou , Yini Mao , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302