Citation: Yong Wang, Xinyi Cao, Jingfei Ji, Xiuling Cui, Chao Pi, Leyao Zhao, Yangjie Wu. Water and fluorinated alcohol mediated/promoted tandem insertion/aerobic oxidation/bisindolylation under metal-free conditions: Easy access to bis(indolyl)methanes[J]. Chinese Chemical Letters, ;2021, 32(5): 1696-1700. doi: 10.1016/j.cclet.2020.12.026 shu

Water and fluorinated alcohol mediated/promoted tandem insertion/aerobic oxidation/bisindolylation under metal-free conditions: Easy access to bis(indolyl)methanes

    * Corresponding authors.
    E-mail addresses: cuixl@zzu.edu.cn (X. Cui), wyj@zzu.edu.cn (Y. Wu).
  • Received Date: 29 September 2020
    Revised Date: 14 December 2020
    Accepted Date: 16 December 2020
    Available Online: 20 December 2020

Figures(5)

  • A green tandem reaction, including insertion/aerobic oxidation/bisindolylation, starting from indoles and diazo compounds has been developed. The combination of water and fluorinated alcohol plays dual roles as solvent and promoter in this chemical transformation. Molecular oxygen in the air acts as an oxidant. 3, 3'-Bis(indolyl)methanes with quaternary carbon were produced under metal-free conditions. No any catalyst and additive were required. N2 and water were released as sole by-products. Absence of water and fluorinated alcohol resulted in Wolff rearrangement product.
  • 加载中
    1. [1]

      (a) T.R. Garbe, M. Kobayashi, N. Shimizu, et al., J. Nat. Prod. 63 (2000) 596-598;
      (b) M. Kobayashi, S. Aoki, K. Gato, et al., Chem. Pharm. Bull. 42 (1994) 2449-2451;
      (c) R. Veluri, I. Oka, I. Wagner-Döbler, H. Laatsch, J. Nat. Prod. 66 (2003) 1520-1523;
      (d) R. Bell, S. Carmeli, N. Sar, J. Nat. Prod. 57 (1994) 1587-1590.

    2. [2]

      (a) C. Hong, G.L. Firestone, L.F. Bjeldanes, Biochem. Pharmacol. 63 (2002) 1085-1097;
      (b) T. Irie, K. Kubushiro, K. Suzuki, et al., Anticancer Res. 19 (1999) 3061-3066;
      (c) H.T. Le, C.M. Schaldach, G.L. Firestone, L.F. Bjeldanes, J. Biol. Chem. 278 (2003) 21136-21145;
      (d) A. Kamal, Y.V.V. Srikanth, M.N.A. Khan, T.B. Shaik, M. Ashraf, Bioorg. Med. Chem. Lett. 20 (2010) 5229-5231;
      (e) B.V. Subba Reddy, N. Rajeswari, M. Sarangapani, et al., Bioorg. Med. Chem. Lett. 22 (2012) 2460-2463;
      (f) M. Shiri, M.A. Zolfigol, H.G. Kruger, Z. Tanbakouchian, Chem. Rev. 110 (2010) 2250-2293.

    3. [3]

      (a) G. Gao, Y. Han, Z.H. Zhang, ChemistrySelect 2 (2017) 11561-11564;
      (b) J. Xiao, H. Wen, L. Wang, et al., Green Chem. 18 (2016) 1032-1037.

    4. [4]

      (a) K. Fuji, Chem. Rev. 93 (1993) 2037-2066;
      (b) I. Denissova, L. Barriault, Tetrahedron 59 (2003) 10105-10146;
      (c) K.W. Quasdorf, L.E. Overman, Nature 516 (2014) 181-191;
      (d) R. Long, J. Huang, J. Gong, Z. Yang, Nat. Prod. Rep. 32 (2015) 1584-1601;
      (e) X.P. Zeng, Z.Y. Cao, Y.H. Wang, F. Zhou, J. Zhou, Chem. Rev. 116 (2016) 7330-7396;
      (f) J. Feng, M. Holmes, M.J. Krische, Chem. Rev. 117 (2017) 12564-12580;
      (g) Y. Li, S. Xu, Chem. Eur. J. 24 (2018) 16218-16245;
      (h) C. Li, S.S. Ragab, G. Liu, W. Tang, Nat. Prod. Rep. 37 (2020) 276-292.

    5. [5]

      (a) M. Delgado-Rebollo, A. Prieto, P.J. Pérez, ChemCatChem 6 (2014) 2047-2052;
      (b) M.B. Johansen, M.A. Kerr, Org. Lett. 12 (2010) 4956-4959;
      (c) A. DeAngelis, V.W. Shurtleff, O. Dmitrenko, J.M. Fox, J. Am. Chem. Soc. 133 (2011) 1650-1653;
      (d) X. Gao, B. Wu, W.X. Huang, M.W. Chen, Y.G. Zhou, Angew. Chem. Int. Ed. 54 (2015) 11956-11960;
      (e) V. Arredondo, S.C. Hiew, E.S. Gutman, I.D.U.A. Premachandra, D.L. Van Vranken, Angew. Chem. Int. Ed. 56 (2017) 4156-4159.

    6. [6]

      Z. Du, Y. Xing, P. Lu, Y. Wang, Org. Lett. 17(2015) 1192-1195.  doi: 10.1021/acs.orglett.5b00089

    7. [7]

      R.R. Singh, R.S. Liu, Chem. Commun. 53(2017) 4593-4596.  doi: 10.1039/C7CC01304C

    8. [8]

      X. Hu, F. Chen, Y. Deng, H. Jiang, W. Zeng, Org. Lett. 20(2018) 6140-6143.  doi: 10.1021/acs.orglett.8b02613

    9. [9]

      (a) C.J. Li, Chem. Rev. 105 (2005) 3095-3166;
      (b) C.J. Li, L. Chen, Chem. Soc. Rev. 35 (2006) 68-82;
      (c) A. Chanda, V.V. Fokin, Chem. Rev. 109 (2009) 725-748;
      (d) R.N. Butler, A.G. Coyne, Chem. Rev. 110 (2010) 6302-6337;
      (e) M.B. Gawande, V.D.B. Bonifácio, R. Luque, P.S. Branco, R.S. Varma, Chem. Soc. Rev. 42 (2013) 5522-5551.

    10. [10]

      (a) R. Breslow, Acc. Chem. Res. 24 (1991) 159-164;
      (b) R. Breslow, Acc. Chem. Res. 37 (2004) 471-478;
      (c) S. Narayan, J. Muldoon, M.G. Finn, et al., Angew. Chem. Int. Ed. 44 (2005) 3275-3279;
      (d) W. Li, G. Yin, L. Huang, et al., Green Chem. 18 (2016) 4879-4883;
      (e) C. Wu, X. Xin, Z.M. Fu, et al., Green Chem. 19 (2017) 1983-1989;
      (f) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30 (2019) 2287-2290;
      (g) Y. Kim, C.J. Li, Green Synth. Catal. 1 (2020) 1-11.

    11. [11]

      (a) J.P. Bégué, D. Bonnet-Delpon, B. Crousse, Synlett (2004) 18-29;
      (b) I.A. Shuklov, N.V. Dubrovina, A. Börner, Synthesis (2007) 2925-2943;
      (c) I. Colomer, A.E.R. Chamberlain, M.B. Haughey, T.J. Donohoe, Nat. Rev. Chem. 1 (2017) 0088;
      (d) J. Wencel-Delord, F. Colobert, Org. Chem. Front. 3 (2016) 394-400.

    12. [12]

      (a) H.F. Motiwala, R.H. Vekariya, J. Aubé, Org. Lett. 17 (2015) 5484-5487;
      (b) R.H. Vekariya, J. Aubé, Org. Lett. 18 (2016) 3534-3537;
      (c) G.X. Li, J. Qu, Chem. Commun. 46 (2010) 2653-2655;
      (d) M. De Rosa, A. Soriente, Eur. J. Org. Chem. (2010) 1029-1032;
      (e) Z. Sadiq, M. Iqbal, E.A. Hussain, S. Naz, J. Mol. Liq. 255 (2018) 26-42;
      (f) W.C. Shiyao Lu, Qilong Shen, Chin. Chem. Lett. 30 (2019) 2279-2281.

    13. [13]

      M.B. Rubin, R. Gleiter, Chem. Rev. 100(2000) 1121-1164.  doi: 10.1021/cr960079j

    14. [14]

      A. Saba, Synth. Commun. 24(1994) 695-699.  doi: 10.1080/00397919408012648

    15. [15]

      Y. Yu, Q. Sha, H. Cui, K.S. Chandler, M.P. Doyle, Org. Lett. 20(2018) 776-779.  doi: 10.1021/acs.orglett.7b03912

    16. [16]

      (a) R.D.C. Gallo, A.C.B. Burtoloso, Green Chem. 20 (2018) 4547-4556;
      (b) H.H. San, S.J. Wang, M. Jiang, X.Y. Tang, Org. Lett. 20 (2018) 4672-4676.

    17. [17]

      (a) S.F. Zhu, C. Chen, Y. Cai, Q.L. Zhou, Angew. Chem. Int. Ed. 47 (2008) 932-934;
      (b) S.F. Zhu, Y. Cai, H.X. Mao, J.H. Xie, Q.L. Zhou, Nat. Chem. 2 (2010) 546-551.

    18. [18]

      X.J. Lv, Y.H. Chen, Y.K. Liu, Org. Lett. 21(2019) 190-195.  doi: 10.1021/acs.orglett.8b03654

    19. [19]

      B.M. Trost, S. Malhotra, P. Koschker, P. Ellerbrock, J. Am. Chem. Soc. 134(2012) 2075-2084.  doi: 10.1021/ja206995s

    20. [20]

      (a) D. Vuluga, J. Legros, B. Crousse, et al., J. Org. Chem. 76 (2011) 1126-1133;
      (b) S. Khaksar, S.M. Vahdat, M. Gholizadeh, S.M. Talesh, J. Fluorine Chem. 136 (2012) 8-11;
      (c) C. Pi, X. Yin, X. Cui, Y. Ma, Y. Wu, Org. Lett. 21 (2019) 2081-2084.

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    5. [5]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    6. [6]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    7. [7]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    8. [8]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    9. [9]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    10. [10]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    11. [11]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    12. [12]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    13. [13]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    14. [14]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    15. [15]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    16. [16]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    17. [17]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    18. [18]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    19. [19]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    20. [20]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

Metrics
  • PDF Downloads(12)
  • Abstract views(825)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return