High-performance electrocatalyst of vanadium-iron bimetal organic framework arrays on nickel foam for overall water splitting
-
* Corresponding author.
E-mail address: jiaxl@ustb.edu.cn (X. Jia).
Citation:
Liang Han, Jie Xu, Ya Huang, Wenjun Dong, Xilai Jia. High-performance electrocatalyst of vanadium-iron bimetal organic framework arrays on nickel foam for overall water splitting[J]. Chinese Chemical Letters,
;2021, 32(7): 2263-2268.
doi:
10.1016/j.cclet.2020.12.015
W. Ye, Y. Yang, X. Fang, et al., ACS Sustain. Chem. Eng. 7 (2019) 18085-18092.
doi: 10.1021/acssuschemeng.9b05126
M. Wang, M. Wang, Y. Fu, et al., Chin. Chem. Lett. 28 (2017) 2207-2211.
doi: 10.1016/j.cclet.2017.11.037
T. Zhang, J. Du, P. Xi, et al., ACS Appl. Mater. Interfaces 9 (2017) 362-370.
doi: 10.1021/acsami.6b12189
P. Chen, T. Zhou, M. Zhang, et al., Adv. Mater. 29 (2017) 1701584.
doi: 10.1002/adma.201701584
W. Qiao, W. Xu, X. Xu, et al., ACS Appl. Energy Mater. 3 (2020) 2315-2322.
doi: 10.1021/acsaem.0c00163
L. Ai, J. Su, M. Wang, et al., ACS Sustain. Chem. Eng. 6 (2018) 9912-9920.
doi: 10.1021/acssuschemeng.8b01120
X. Chen, X. Zhen, H. Gong, et al., Chin. Chem. Lett. 30 (2019) 681-685.
doi: 10.1016/j.cclet.2018.09.017
U.K. Sultana, A.P. O'Mullane, ChemElectroChem 6 (2019) 2630-2637.
doi: 10.1002/celc.201801731
G. Wei, K. Du, X. Zhao, et al., Chin. Chem. Lett. 31 (2020) 2641-2644.
doi: 10.1016/j.cclet.2020.02.029
J. Xu, M. Wang, F. Yang, et al., Inorg. Chem. 58 (2019) 13037-13048.
doi: 10.1021/acs.inorgchem.9b01953
C. Du, Y. Men, X. Hei, et al., ChemElectroChem 5 (2018) 2564-2570.
doi: 10.1002/celc.201800630
L. Zeng, L. Yang, J. Lu, et al., Chin. Chem. Lett. 29 (2018) 1875-1878.
doi: 10.1016/j.cclet.2018.10.026
J. Xu, X. Zhu, X. Jia, ACS Sustain. Chem. Eng. 7 (2019) 16629-16639.
doi: 10.1021/acssuschemeng.9b03952
B. You, N. Jiang, M. Sheng, et al., Chem. Mater. 27 (2015) 7636-7642.
doi: 10.1021/acs.chemmater.5b02877
X. Zhao, P. Pachfule, S. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 8921-8926.
doi: 10.1002/anie.201803136
D. Ding, K. Shen, X. Chen, et al., ACS Catal. 8 (2018) 7879-7888.
doi: 10.1021/acscatal.8b02504
H.B. Wu, X.W. Lou, Sci. Adv. 3 (2017) eaap9252.
doi: 10.1126/sciadv.aap9252
V. Maruthapandian, S. Kumaraguru, S. Mohan, et al., ChemElectroChem 5 (2018) 2795-2807.
doi: 10.1002/celc.201800802
Y. Wang, B. Zhang, W. Pan, et al., ChemSusChem 10 (2017) 4170-4177.
doi: 10.1002/cssc.201701456
C. Sun, Q. Dong, J. Yang, et al., Nano Res. 9 (2016) 2234-2243.
doi: 10.1007/s12274-016-1110-1
D. Senthil Raja, X.F. Chuah, S.Y. Lu, Adv. Energy Mater. 8 (2018) 1801065.
doi: 10.1002/aenm.201801065
H. Zhang, J. Su, K. Zhao, et al., ChemElectroChem 7 (2020) 1805-1824.
doi: 10.1002/celc.202000136
Y. Fu, L. Xu, H. Shen, et al., Chem. Eng. J. 299 (2016) 135-141.
doi: 10.1016/j.cej.2016.04.102
W. Wang, X. Xu, W. Zhou, et al., Adv. Sci. 4 (2017) 1600371.
doi: 10.1002/advs.201600371
H.-W. Lin, D. Senthil Raja, X.F. Chuah, et al., Appl. Catal., B 258 (2019) 118023.
doi: 10.1016/j.apcatb.2019.118023
K. Rui, G. Zhao, Y. Chen, et al., Adv. Funct. Mater 28 (2018) 1801554.
doi: 10.1002/adfm.201801554
L. Jiao, Y. Wang, H.L. Jiang, et al., Adv. Mater. 30 (2018) 1703663.
doi: 10.1002/adma.201703663
L. Han, J. Xu, X. Zhu, et al., Mater. Today Energy 16 (2020) 100419.
doi: 10.1016/j.mtener.2020.100419
G. Cai, W. Zhang, L. Jiao, et al., Chemistry 2 (2017) 791-802.
doi: 10.1016/j.chempr.2017.04.016
J. Duan, S. Chen, C. Zhao, Nat. Commun. 8 (2017) 15341.
doi: 10.1038/ncomms15341
S. Zhao, Y. Wang, J. Dong, et al., Nat. Energy 1 (2016) 16184.
doi: 10.1038/nenergy.2016.184
M. Jahan, Z. Liu, K.P. Loh, Adv. Funct. Mater 23 (2013) 5363-5372.
doi: 10.1002/adfm.201300510
X. Zhao, B. Pattengale, D. Fan, et al., ACS Energy Lett. 3 (2018) 2520-2526.
doi: 10.1021/acsenergylett.8b01540
M. Cai, X. Lu, Z. Zou, et al., ACS Sustain. Chem. Eng. 7 (2019) 6161-6169.
doi: 10.1021/acssuschemeng.8b06360
J. Zhou, Y. Dou, A. Zhou, et al., ACS Energy Lett. 3 (2018) 1655-1661.
doi: 10.1021/acsenergylett.8b00809
J. Zheng, W. Zhou, T. Liu, et al., Nanoscale 9 (2017) 4409-4418.
doi: 10.1039/C6NR07953A
Y. Shi, Y. Yu, Y. Liang, et al., Angew. Chem. Int. Ed. 58 (2019) 3769-3773.
doi: 10.1002/anie.201811241
W. Li, S. Watzele, H.A. El-Sayed, et al., J. Am. Chem. Soc. 141 (2019) 5926-5933.
doi: 10.1021/jacs.9b00549
C. Kuai, Z. Xu, C. Xi, et al., Nat. Catal. 3 (2020) 743-753.
doi: 10.1038/s41929-020-0496-z
W. Zhu, X. Yue, W. Zhang, et al., Chem. Commun. 52 (2016) 1486-1489.
doi: 10.1039/C5CC08064A
W. Zhou, X.J. Wu, X. Cao, et al., Energy Environ. Sci. 6 (2013) 2921-2924.
doi: 10.1039/c3ee41572d
Y. Li, X. Du, J. Huang, et al., Small 15 (2019) 1901980.
doi: 10.1002/smll.201901980
J. Liu, Y. Ji, J. Nai, et al., Energy Environ. Sci. 11 (2018) 1736-1741.
doi: 10.1039/C8EE00611C
H.Y. Wang, Y.Y. Hsu, R. Chen, et al., Adv. Energy Mater. 5 (2015) 1500091.
doi: 10.1002/aenm.201500091
Z. Zou, T. Wang, X. Zhao, et al., ACS Catal. 9 (2019) 7356-7364.
doi: 10.1021/acscatal.9b00072
X. Wang, W. Zhou, Y.P. Wu, et al., J. Alloys Compd. 753 (2018) 228-233.
doi: 10.3390/pr6110228
J.W. Tian, M.X. Fu, D.D. Huang, et al., Inorg. Chem. Commun. 95 (2018) 73-77.
doi: 10.1016/j.inoche.2018.07.009
Y. Wang, S. Li, Y. Chen, et al., Appl. Surf. Sci 505 (2020) 144503.
doi: 10.1016/j.apsusc.2019.144503
M. Li, H. Wang, Y. Zhu, et al., Appl. Surf. Sci 496 (2019) 143672.
doi: 10.1016/j.apsusc.2019.143672
Y. Xie, M. Chen, M. Cai, et al., Inorg. Chem. 58 (2019) 14652-14659.
doi: 10.1021/acs.inorgchem.9b02333
F. Wang, J. Chen, X. Qi, et al., Appl. Surf. Sci 481 (2019) 1403-1411.
doi: 10.1016/j.apsusc.2019.03.200
C. Tang, N. Cheng, Z. Pu, et al., Angew. Chem. Int. Ed. 54 (2015) 9351-9355.
doi: 10.1002/anie.201503407
L. Ma, K. Zhang, S. Wang, et al., Appl. Surf. Sci 489 (2019) 815-823.
doi: 10.1016/j.apsusc.2019.06.044
J. Hu, Y. Ou, Y. Li, et al., ACS Sustain. Chem. Eng. 6 (2018) 11724-11733.
doi: 10.1021/acssuschemeng.8b01978
Z. Tao, T. Wang, X. Wang, et al., ACS Appl. Mater. Interfaces 8 (2016) 35390-35397.
doi: 10.1021/acsami.6b13411
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221