Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction
-
* Corresponding authors.
E-mail addresses: ndxuhui006@gmail.com (H. Xu), duyk@suda.edu.cn (Y. Du).
Citation:
Cheng Wang, Liujun Jin, Hongyuan Shang, Hui Xu, Yukihide Shiraishi, Yukou Du. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction[J]. Chinese Chemical Letters,
;2021, 32(7): 2108-2116.
doi:
10.1016/j.cclet.2020.11.051
Y. Choi, S.K. Cha, H. Ha, et al., Nat. Nanotechnol. 14 (2019) 245-251.
doi: 10.1038/s41565-019-0367-4
H. Xu, H. Shang, C. Wang, et al., Adv. Mater. Funct. 30 (2020) 2006317.
doi: 10.1002/adfm.202006317
Y. Yao, S. Hu, W. Chen, et al., Nat. Catal. 2 (2019) 304-313.
doi: 10.1038/s41929-019-0246-2
X. Chia, M. Pumera, Nat. Catal. 1 (2018) 909-921.
doi: 10.1038/s41929-018-0181-7
Z. Xue, X. Li, Q. Liu, et al., Adv. Mater. 31 (2019) e1900430.
doi: 10.1002/adma.201900430
A. Li, H. Ooka, N. Bonnet, et al., Angew. Chem. Int. Ed. 58 (2019) 5054-5058.
doi: 10.1002/anie.201813361
Y. Lin, Q. Lu, F. Song, et al., Angew. Chem. Int. Ed. 58 (2019) 8917-8921.
doi: 10.1002/anie.201902884
P. Xiong, X. Zhang, H. Wan, et al., Nano Lett. 19 (2019) 4518-4526.
doi: 10.1021/acs.nanolett.9b01329
X. Gu, Z. Liu, H. Liu, et al., Chem. Eng. J. 403 (2021) 126371.
doi: 10.1016/j.cej.2020.126371
B. Liu, B. Cao, Y. Cheng, et al., iScience 23 (2020) 101264.
doi: 10.1016/j.isci.2020.101264
F. Gao, G. Pan, Y. Zhang, et al., Chin. Chem. Lett. 31 (2020) 2230-2234.
doi: 10.1016/j.cclet.2020.01.037
H. Wang, S. Zhu, J. Deng, et al., Chin. Chem. Lett. 32 (2021) 291-298.
doi: 10.1016/j.cclet.2020.02.018
H. Liu, Z. Liu, F. Wang, et al., Chem. Eng. J. 397 (2020) 125507.
doi: 10.1016/j.cej.2020.125507
Z. Liu, H. Liu, X. Gu, et al., Chem. Eng. J. 397 (2020) 125500.
doi: 10.1016/j.cej.2020.125500
P. Han, T. Tan, F. Wu, et al., Chin. Chem. Lett. 31 (2020) 2469-2472.
doi: 10.1016/j.cclet.2020.03.009
S. Dutta, C. Ray, Y. Negishi, et al., Chin. Chem. Lett. 30 (2019) 229-233.
doi: 10.1016/j.cclet.2018.03.020
L. Feng, R. Ding, Y. Chen, et al., J. Power Sources 452 (2020) 227837.
doi: 10.1016/j.jpowsour.2020.227837
H. Huang, Y. Zhao, Y. Bai, et al., Adv. Sci. 7 (2020) 2000012.
doi: 10.1002/advs.202000012
X. Zhao, J. Meng, Z. Yan, et al., Chin. Chem. Lett. 30 (2019) 319-323.
doi: 10.1016/j.cclet.2018.03.035
L. Tian, X. Zhai, X. Wang, et al., J. Mater. Chem. A 8 (2020) 14400-14414.
doi: 10.1039/D0TA05116K
A. Muthurasu, V. Maruthapandian, H.Y. Kim, Appl. Catal. B: Environ. 248 (2019) 202-210.
doi: 10.1016/j.apcatb.2019.02.014
Q. Shi, C. Zhu, D. Du, et al., Chem. Soc. Rev. 48 (2019) 3181-3192.
doi: 10.1039/C8CS00671G
H. Chu, D. Zhang, B. Jin, et al., Appl. Catal. B: Environ. 255 (2019) 117744.
doi: 10.1016/j.apcatb.2019.117744
J. Wang, L. Han, B. Huang, et al., Nat. Commun. 10 (2019) 5692.
doi: 10.1038/s41467-019-13519-1
B. Tang, X. Yang, Z. Kang, et al., Appl. Catal. B: Environ. 278 (2020) 119281.
doi: 10.1016/j.apcatb.2020.119281
Q. Xue, W. Gao, J. Zhu, et al., J. Colloid Interface Sci. 529 (2018) 325-331.
doi: 10.1016/j.jcis.2018.06.014
M. Yang, T. Feng, Y. Chen, et al., Appl. Catal. B: Environ. 267 (2020) 118657.
doi: 10.1016/j.apcatb.2020.118657
Y. Xing, K. Wang, N. Li, et al., Matter 2 (2020) 1494-1508.
doi: 10.1016/j.matt.2020.02.020
H. Sun, J.M. Yang, J.G. Li, et al., Appl. Catal. B: Environ. 272 (2020) 118988.
doi: 10.1016/j.apcatb.2020.118988
Z. Zhou, W.Q. Zaman, W. Sun, et al., Chem. Commun. 54 (2018) 4959-4962.
doi: 10.1039/C8CC02008F
M. Escudero-Escribano, A.F. Pedersen, E.A. Paoli, et al., J. Phys. Chem. B 122 (2018) 947-955.
doi: 10.1021/acs.jpcb.7b07047
R.G. González-Huerta, G. Ramos-Sánchez, P.B. Balbuena, J. Power Sources 268 (2014) 69-76.
doi: 10.1016/j.jpowsour.2014.06.029
K.A. Stoerzinger, L. Qiao, M.D. Biegalski, et al., J. Phys. Chem. Lett. 5 (2014) 1636-1641.
doi: 10.1021/jz500610u
Z. Wang, B. Xiao, Z. Lin, et al., J. Energy Chem. 54 (2021) 510-518.
doi: 10.1016/j.jechem.2020.06.042
C. Hegde, X. Sun, K.N. Dinh, et al., ACS Appl. Mater. Interfaces 12 (2020) 2380-2389.
doi: 10.1021/acsami.9b17273
J. Chen, H. Li, C. Fan, et al., Adv. Mater. 32 (2020) e2003134.
doi: 10.1002/adma.202003134
S.M. Galani, A. Mondal, D.N. Srivastava, et al., Int. J. Hydrogen Energy 45 (2020) 18635-18644.
doi: 10.1016/j.ijhydene.2019.08.026
Y. Wen, T. Yang, C. Cheng, et al., Chin. J. Catal. 41 (2020) 1161-1167.
doi: 10.1016/S1872-2067(20)63543-4
Y. Li, Y. Wang, J. Lu, et al., Nano Energy 78 (2020) 105185.
doi: 10.1016/j.nanoen.2020.105185
Y. Tian, S. Wang, E. Velasco, et al., iScience 23 (2020) 100756.
doi: 10.1016/j.isci.2019.100756
T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 134 (2012) 1519-1527.
doi: 10.1021/ja206511w
Y. Liu, H. Cheng, M. Lyu, et al., J. Am. Chem. Soc. 136 (2014) 15670-15675.
doi: 10.1021/ja5085157
W.D. Chemelewski, J.R. Rosenstock, C.B. Mullins, J. Mater. Chem. A 2 (2014) 14957.
doi: 10.1039/C4TA03078H
Y. Meng, W. Song, H. Huang, et al., J. Am. Chem. Soc. 136 (2014) 11452-11464.
doi: 10.1021/ja505186m
N. Danilovic, R. Subbaraman, K.C. Chang, et al., J. Phys. Chem. Lett. 5 (2014) 2474-2478.
doi: 10.1021/jz501061n
A. Mendoza-Garcia, H. Zhu, Y. Yu, etal., Angew. Chem. Int. Ed. 54 (2015) 9642-9645.
doi: 10.1002/anie.201503386
K. Li, J. Zhang, R. Wu, et al., Adv. Sci. 3 (2016) 1500426.
doi: 10.1002/advs.201500426
G. Zhang, G. Wang, Y. Liu, et al., J. Am. Chem. Soc. 138 (2016) 14686-14693.
doi: 10.1021/jacs.6b08491
H. Liang, A.N. Gandi, D.H. Anjum, et al., Nano Lett. 16 (2016) 7718-7725.
doi: 10.1021/acs.nanolett.6b03803
M. Liu, J. Li, ACS Appl. Mater. Interfaces 8 (2016) 2158-2165.
doi: 10.1021/acsami.5b10727
P. Chen, K. Xu, T. Zhou, et al., Angew. Chem. Int. Ed. 55 (2016) 2488-2492.
doi: 10.1002/anie.201511032
Y. Dou, T. Liao, Z. Ma, et al., Nano Energy 30 (2016) 267-275.
doi: 10.1016/j.nanoen.2016.10.020
L. Zeng, L. Yang, J. Lu, et al., Chin. Chem. Lett. 29 (2018) 1875-1878.
doi: 10.1016/j.cclet.2018.10.026
X. Li, K. -L. Yan, Y. Rao, et al., Electrochim. Acta 220 (2016) 536-544.
doi: 10.1016/j.electacta.2016.10.138
J. -H. Zhang, J. -Y. Feng, T. Zhu, et al., Electrochim. Acta 196 (2016) 661-669.
doi: 10.1016/j.electacta.2016.03.025
J. Liu, S. Zhao, C. Li, et al., Adv. Energy Mater. 6 (2016) 1502039.
doi: 10.1002/aenm.201502039
K.R. Yoon, G.Y. Lee, J.W. Jung, et al., Nano Lett. 16 (2016) 2076-2083.
doi: 10.1021/acs.nanolett.6b00185
Y. Pi, N. Zhang, S. Guo, et al., Nano Lett. 16 (2016) 4424-4430.
doi: 10.1021/acs.nanolett.6b01554
Z. Gao, J. Qi, M. Chen, et al., Electrochim. Acta 224 (2017) 412-418.
doi: 10.1016/j.electacta.2016.12.070
M. Gorlin, J. Ferreira de Araujo, H. Schmies, et al., J. Am. Chem. Soc. 139 (2017) 2070-2082.
doi: 10.1021/jacs.6b12250
A. Yu, C. Lee, M.H. Kim, et al., ACS Appl. Mater. Interfaces 9 (2017) 35057-35066.
doi: 10.1021/acsami.7b12247
J. Chi, H. Yu, B. Qin, et al., ACS Appl. Mater. Interfaces 9 (2017) 464-471.
doi: 10.1021/acsami.6b13360
T. Zhang, J. Du, P. Xi, et al., ACS Appl. Mater. Interfaces 9 (2017) 362-370.
doi: 10.1021/acsami.6b12189
A. Nadeema, V.M. Dhavale, S. Kurungot, Nanoscale 9 (2017) 12590-12600.
doi: 10.1039/C7NR02225E
M. Huynh, C. Shi, S.J. Billinge, et al., J. Am. Chem. Soc. 137 (2015) 14887-14904.
doi: 10.1021/jacs.5b06382
F. Dionigi, T. Reier, Z. Pawolek, et al., ChemSusChem 9 (2016) 962-972.
doi: 10.1002/cssc.201501581
C. Xie, Y. Wang, D. Yan, et al., Nanoscale 9 (2017) 16059-16065.
doi: 10.1039/C7NR06054H
P. Cai, J. Huang, J. Chen, et al., Angew. Chem. Int. Ed. 56 (2017) 4858-4861.
doi: 10.1002/anie.201701280
J. Yu, G. Li, H. Liu, et al., Adv. Sci. 6 (2019) 1901458.
doi: 10.1002/advs.201901458
Y. Li, F. Li, Y. Zhao, et al., J. Mater. Chem. A 7 (2019) 20658-20666.
doi: 10.1039/C9TA07289F
H. Huang, F. Li, Y. Zhang, et al., J. Mater. Chem. A 7 (2019) 5575-5582.
doi: 10.1039/C9TA00040B
L. Shi, T. Zhao, A. Xu, et al., ACS Catal. 6 (2016) 6285-6293.
doi: 10.1021/acscatal.6b01778
C. Roy, R.R. Rao, K.A. Stoerzinger, et al., ACS Energy Lett. 3 (2018) 2045-2051.
doi: 10.1021/acsenergylett.8b01178
X. Cui, P. Ren, C. Ma, et al., Adv. Mater. 32 (2020) e1908126.
doi: 10.1002/adma.201908126
Y. Zhu, X. Ji, C. Pan, et al., Energy Environ. Sci. 6 (2013) 3665.
doi: 10.1039/c3ee41776j
M. Zhang, J. Chen, H. Li, et al., Nano Energy 61 (2019) 576-583.
doi: 10.1016/j.nanoen.2019.04.050
Y. Hu, X. Luo, G. Wu, et al., ACS Appl. Mater. Interfaces 11 (2019) 42298-42304.
doi: 10.1021/acsami.9b16492
S. Chen, H. Huang, P. Jiang, et al., ACS Catal. 10 (2019) 1152-1160.
D. Chakraborty, S. Nandi, R. Illathvalappil, et al., ACS Omega 4 (2019) 13465-13473.
doi: 10.1021/acsomega.9b01777
J. Yu, G. Li, H. Liu, et al., Adv. Funct. Mater. 29 (2019) 1901154.
doi: 10.1002/adfm.201901154
J. Su, R. Ge, K. Jiang, et al., Adv. Mater. 30 (2018) e1801351.
doi: 10.1002/adma.201801351
J. Wang, Y. Ji, R. Yin, et al., J. Mater. Chem. A 7 (2019) 6411-6416.
doi: 10.1039/C9TA00598F
K. Wang, B. Huang, W. Zhang, et al., J. Mater. Chem. A 8 (2020) 15746-15751.
doi: 10.1039/D0TA03213A
Y. Lin, Z. Tian, L. Zhang, et al., Nat. Commun. 10 (2019) 162.
doi: 10.1038/s41467-018-08144-3
Y. Luo, L. Tang, U. Khan, et al., Nat. Commun. 10 (2019) 269.
doi: 10.1038/s41467-018-07792-9
W. Zhang, J. Zhao, J. Zhang, et al., ACS Appl. Mater. Interfaces 12 (2020) 10299-10306.
doi: 10.1021/acsami.9b19980
H.F. Wang, L. Chen, H. Pang, et al., Chem. Soc. Rev. 49 (2020) 1414-1448.
doi: 10.1039/C9CS00906J
S. Hu, Y. Yu, Y. Guan, et al., Chin. Chem. Lett. 31 (2020) 2839-2842.
doi: 10.1016/j.cclet.2020.08.021
H. Zhang, J. He, C. Zhai, et al., Chin. Chem. Lett. 30 (2019) 2338-2342.
doi: 10.1016/j.cclet.2019.07.021
H. Hu, Bu Y. Guan, Xiong W. Lou, Chem 1 (2016) 102-113.
doi: 10.1016/j.chempr.2016.06.001
M. Zhang, J. He, Y. Chen, et al., Chin. Chem. Lett. 31 (2020) 2721-2724.
doi: 10.1016/j.cclet.2020.05.001
X. -Y. Yu, Y. Feng, Y. Jeon, et al., Adv. Mater. 28 (2016) 9006-9011.
doi: 10.1002/adma.201601188
J. Ding, L. Bu, S. Guo, Nano Lett. 16 (2016) 2762-2767.
doi: 10.1021/acs.nanolett.6b00471
Y. Li, Y. Sun, Y. Qin, et al., Adv. Energy Mater. 10 (2020) 1903120.
doi: 10.1002/aenm.201903120
Z. Li, Y. Chen, S. Ji, et al., Nat. Chem. 12 (2020) 764-772.
doi: 10.1038/s41557-020-0473-9
Y. Xiong, J. Dong, Z.Q. Huang, et al., Nat. Nanotechnol. 15 (2020) 390-397.
doi: 10.1038/s41565-020-0665-x
Y. Li, Z.S. Wu, P. Lu, et al., Adv. Sci. 7 (2020) 1903089.
doi: 10.1002/advs.201903089
X. Li, X. Yang, Y. Huang, et al., Adv. Mater. 31 (2019) e1902031.
doi: 10.1002/adma.201902031
V. Ramalingam, P. Varadhan, H.C. Fu, et al., Adv. Mater. 31 (2019) e1903841.
doi: 10.1002/adma.201903841
P.F. Yin, M. Zhou, J. Chen, et al., Adv. Mater. (2020) e2000482.
D. Cao, J. Wang, H. Xu, et al., Small (2020) e2000924.
X. Ma, W. Zhang, Y. Deng, et al., Nanoscale 10 (2018) 4816-4824.
doi: 10.1039/C7NR09424H
N. Yang, H. Cheng, X. Liu, Adv. Mater. 30 (2018) e1803234.
doi: 10.1002/adma.201803234
R.R. Rao, M.J. Kolb, N.B. Halck, et al., Energy Environ. Sci. 10 (2017) 2626-2637.
doi: 10.1039/C7EE02307C
Y. Li, F. -M. Li, X. -Y. Meng, et al., Nano Energy 54 (2018) 238-250.
doi: 10.1016/j.nanoen.2018.10.032
E. Cao, Z. Chen, H. Wu, et al., Angew. Chem. Int. Ed. 59 (2020) 4154-4160.
doi: 10.1002/anie.201915254
X. Wang, Y. Fei, W. Li, et al., ACS Appl. Mater. Interfaces 12 (2020) 16548-16556.
doi: 10.1021/acsami.0c02076
W. Yang, Z. Wang, W. Zhang, et al., Trends Chem. 1 (2019) 259-271.
doi: 10.1016/j.trechm.2019.03.006
C. Wang, H. Xu, Y. Wang, et al., Inorg. Chem. 59 (2020) 11814-11822.
doi: 10.1021/acs.inorgchem.0c01832
H. Xu, H. Shang, J. Di, et al., Inorg. Chem. 58 (2019) 15433-15442.
doi: 10.1021/acs.inorgchem.9b02524
E.P. Alsac, E. Ulker, S.V.K. Nune, et al., Chemistry 24 (2018) 4856-4863.
doi: 10.1002/chem.201704933
H. Xu, H. Shang, C. Wang, et al., Appl. Catal. B: Environ. 265 (2020) 118605.
doi: 10.1016/j.apcatb.2020.118605
Y. Li, Y. Shan, H. Pang, et al., Chin. Chem. Lett. 31 (2020) 2280-2286.
doi: 10.1016/j.cclet.2020.03.027
H. Xu, H. Shang, C. Wang, et al., Adv. Funct. Mater. 30 (2020) 2000793.
doi: 10.1002/adfm.202000793
J. -G. Li, H. Sun, L. Lv, et al., ACS Appl. Mater. Interfaces 11 (2019) 8106-8114.
doi: 10.1021/acsami.8b22133
H. Xu, H. Shang, L. Jin, et al., J. Mater. Chem. A 7 (2019) 26905-26910.
doi: 10.1039/C9TA09310A
Y. Wu, M. Tariq, W.Q. Zaman, et al., ACS Appl. Energy Mater. 2 (2019) 4105-4110.
doi: 10.1021/acsaem.9b00266
H. Xu, H. Shang, C. Wang, et al., Coord. Chem. Rev. 418 (2020) 213374.
doi: 10.1016/j.ccr.2020.213374
H. Xu, P. Song, C. Fernandez, et al., ACS Appl. Mater. Interfaces 10 (2018) 12659-12665.
doi: 10.1021/acsami.8b00532
M. Zhao, Y. Xia, Nat. Rev. Mater. 5 (2020) 440-459.
doi: 10.1038/s41578-020-0183-3
W. Tong, Q. Shao, P. Wang, et al., Chem. Eur. J. 25 (2019) 7218-7224.
doi: 10.1002/chem.201901064
P. Wang, M. Qiao, Q. Shao, et al., Nat. Commun. 9 (2018) 4933.
doi: 10.1038/s41467-018-07419-z
D. Cao, H. Xu, D. Cheng, Adv. Energy Mater. 10 (2020) 1903038.
doi: 10.1002/aenm.201903038
Z. Chen, H. Wu, J. Li, et al., Appl. Catal. B: Environ. 265 (2020) 118576.
doi: 10.1016/j.apcatb.2019.118576
G. Yilmaz, C.F. Tan, Y.F. Lim, et al., Adv. Energy Mater. 9 (2019) 1802983.
doi: 10.1002/aenm.201802983
A. Zagalskaya, V. Alexandrov, ACS Catal. 10 (2020) 3650-3657.
doi: 10.1021/acscatal.9b05544
N. Zhang, F. Zheng, B. Huang, et al., Adv. Mater. 32 (2020) 1906477.
doi: 10.1002/adma.201906477
E. Arciga-Duran, Y. Meas, J.J. Pérez-Bueno, et al., Electrochim. Acta 268 (2018) 49-58.
doi: 10.1016/j.electacta.2018.02.099
M.Q. Yang, J. Wang, H. Wu, et al., Small 14 (2018)1703323.
doi: 10.1002/smll.201703323
Y. Zhang, J. Fu, H. Zhao, et al., Appl. Catal. B: Environ. 257 (2019) 117899.
doi: 10.1016/j.apcatb.2019.117899
Q. Xu, H. Jiang, H. Zhang, et al., Electrochim. Acta 259 (2018) 962-967.
doi: 10.1016/j.electacta.2017.11.028
W. Xu, F. Lyu, Y. Bai, et al., Nano Energy 43 (2018) 110-116.
doi: 10.1016/j.nanoen.2017.11.022
G. Wei, J. He, W. Zhang, et al., Inorg. Chem. 57 (2018) 7380-7389.
doi: 10.1021/acs.inorgchem.8b01020
Y. Zhao, J. Zhang, W. Wu, et al., Nano Energy 54 (2018) 129-137.
doi: 10.1016/j.nanoen.2018.10.008
L. Zhuang, L. Ge, Y. Yang, et al., Adv. Mater. 29 (2017) 1606793.
doi: 10.1002/adma.201606793
H. Sun, Y. Zhao, K. Molhave, M. Zhang, J. Zhang, Nanoscale 9 (2017) 14431-14441.
doi: 10.1039/C7NR03810K
L. Xu, Q. Jiang, Z. Xiao, et al., Angew. Chem. Int. Ed. 55 (2016) 5277-5281.
doi: 10.1002/anie.201600687
S. Yuan, W. Chen, L. Zhang, et al., Small 15 (2019) e1903311.
doi: 10.1002/smll.201903311
E. Detsi, J.B. Cook, B. Lesel, et al., Energy Environ. Sci. 9 (2016) 540-549.
doi: 10.1039/C5EE02509E
G. Wei, K. Du, X. Zhao, et al., Chin. Chem. Lett. 31 (2020) 2641-2644.
doi: 10.1016/j.cclet.2020.02.029
H. Fang, T. Huang, Y. Sun, et al., J. Catal. 371 (2019) 185-195.
doi: 10.1016/j.jcat.2019.02.005
H. Xu, B. Yan, S. Li, et al., Chem. Eng. J. 334 (2018) 2638-2646.
doi: 10.1016/j.cej.2017.10.175
K. Xie, W. Xia, J. Masa, et al., J. Energy Chem. 25 (2016) 282-288.
doi: 10.1016/j.jechem.2016.01.023
G. Li, J. Wang, J. Yu, et al., Appl. Catal. B: Environ. 261 (2020) 118147.
doi: 10.1016/j.apcatb.2019.118147
M. Rahsepar, M.R. Nobakht, H. Kim, et al., Appl. Surf. Sci. 447 (2018) 182-190.
doi: 10.1016/j.apsusc.2018.03.227
Z. Fan, F. Liao, H. Shi, et al., Inorg. Chem. Front. 7 (2020) 2188-2194.
doi: 10.1039/D0QI00095G
J. Yu, Q. He, G. Yang, et al., ACS Catal. 9 (2019) 9973-10011.
doi: 10.1021/acscatal.9b02457
L. Jin, H. Pang, Chin. Chem. Lett. 31 (2020) 2300-2304.
doi: 10.1016/j.cclet.2020.03.041
P. Prabhu, V. Jose, J.M. Lee, Matter 2 (2020) 526-553.
doi: 10.1016/j.matt.2020.01.001
C. Liu, T. Gong, J. Zhang, et al., Appl. Catal. B: Environ. 262 (2020) 118245.
doi: 10.1016/j.apcatb.2019.118245
K. Chu, Y.P. Liu, Y.B. Li, et al., Appl. Catal. B: Environ. 12 (2020) 7081-7090.
Y. Liu, S. Jiang, S. Li, et al., Appl. Catal. B: Environ. 247 (2019) 107-114.
doi: 10.1016/j.apcatb.2019.01.094
B. Wang, C. Tang, H.F. Wang, et al., Adv. Mater. 31 (2019) 1805658.
doi: 10.1002/adma.201805658
D. Su, X. Zhang, A. Wu, et al., NPG Asia Mater. 11 (2019) 78.
doi: 10.1038/s41427-019-0177-z
S. Sun, X. Jin, B. Cong, et al., J. Catal. 379 (2019) 1-9.
doi: 10.1016/j.jcat.2019.09.010
H. Xu, P. Song, Y. Zhang, et al., Nanoscale 10 (2018) 12605-12611.
doi: 10.1039/C8NR03386B
J. Bai, T. Meng, D. Guo, et al., ACS Appl. Mater. Interfaces 10 (2018) 1678-1689.
doi: 10.1021/acsami.7b14997
M. Escudero-Escribano, A.F. Pedersen, E.A. Paoli, et al., J. Phys. Chem. B 122 (2018) 947-955.
doi: 10.1021/acs.jpcb.7b07047
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Qing Li , Yumei Feng , Yingjie Yu , Yazhou Chen , Yuhua Xie , Fang Luo , Zehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887