Citation: Kaida Zhou, Jiapian Huang, Jie Wu, Guanyinsheng Qiu. An unexpected iron(Ⅱ)-promoted reaction of N-arylprop-2-yn-1-imines with water: Facile assembly of multi-substituted pyrroles[J]. Chinese Chemical Letters, ;2021, 32(1): 37-39. doi: 10.1016/j.cclet.2020.11.049 shu

An unexpected iron(Ⅱ)-promoted reaction of N-arylprop-2-yn-1-imines with water: Facile assembly of multi-substituted pyrroles

    * Corresponding author at: School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
    ** Corresponding author.
    E-mail addresses: jie_wu@fudan.edu.cn (J. Wu), qiuguanyinsheng@mail.zjxu.edu.cn (G. Qiu).
  • Received Date: 7 September 2020
    Revised Date: 20 November 2020
    Accepted Date: 25 November 2020
    Available Online: 1 December 2020

Figures(3)

  • Generation of multi-substituted pyrroles is accomplished through an unexpected iron(Ⅱ)-promoted reaction of N-arylprop-2-yn-1-imines with water. This transformation proceeds smoothly with excellent chemoselectivity and regioselectivity. A stoichiometric amount of Fe(OTf)2 is necessary for the successful conversion. A Lewis acid-promoted tandem reaction pathway is proposed.
  • 加载中
    1. [1]

      (a) D. Zheng, Y. An, Z. Li, J. Wu, Angew. Chem. Int. Ed. 53 (2014) 2451-2454;
      (b) D. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 55 (2016) 11925-11929;
      (c) X. Gong, M. Wang, S. Ye, J. Wu, Org. Lett. 21 (2019) 1156-1160;
      (d) S. Ye, D. Zheng, J. Wu, G. Qiu, Chem. Commun. 55 (2019) 2214-2217;
      (e) S. Ye, Y. Li, J. Wu, Z. Li, Chem. Commun. 55 (2019) 2489-2492;
      (f) X. Gong, X. Li, W. Xie, J. Wu, S. Ye, Org. Chem. Front. 6 (2019) 1863-1867;
      (g) S. Ye, T. Xiang, X. Li, J. Wu, Org. Chem. Front. 6 (2019) 2183-2199;
      (h) J. Zhang, W. Xie, S. Ye, J. Wu, Org. Chem. Front. 6 (2019) 2254-2259;
      (i) F.S. He, X. Gong, P. Rojsitthisak, J. Wu, J. Org. Chem. 84 (2019) 13159-13163;
      (j) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. 8 (2019) 893-898.

    2. [2]

      CCDC 2019851.

    3. [3]

      (a) D. Lee, J.K. Sello, S.L. Schreiber, Org. Lett. 2 (2000) 709-712;
      (b) O. Kwon, S.B. Park, S.L. Schreiber, J. Am. Chem. Soc. 123 (2001) 6740-6741;
      (c) S.L. Schreiber, Science 287 (2000) 1964-1969;
      (d) S.Y. Shang, D.S. Tan, Curr. Opin. Chem. Biol. 9 (2005) 248-258;
      (e) D. Cheng, Y. Ishihara, B. Tan, C.F. Barbas, ACS Catal. 4 (2014) 743-762;
      (f) A. Shaabani, S.E. Hooshmand, Mol. Divers. 22 (2018) 207-224;
      (g) J.F. Campos, S. Berteina-Raboin, Catalysts 10 (2020) 631-683;
      (h) K.C. Nicolaou, L. Shi, M. Lu, et al., Angew. Chem., Int. Ed. 53 (2014) 10970-10974;
      (i) H. Uchiro, N. Shionozaki, R. Tanaka, et al., Tetrahedron Lett. 54 (2013) 506-511;
      (j) R. Tanaka, K. Ohishi, N. Takanashi, et al., Org. Lett. 14 (2012) 4886-4889.

    4. [4]

      (a) Y. Nishii, M. Miura, ACS Catal. 10 (2020) 9747-9757;
      (b) S. Bhunia, P. Ghosh, S.R. Patra, Adv. Synth. Catal. 362 (2020) 3664-3708;
      (c) A.D. Sonawane, R.A. Sonawane, M. Ninomiya, M. Koketsu, Adv. Synth. Catal. 362 (2020) 3485-3515;
      (e) Y. Wang, C. Zhang, S. Li, ChemistrySelect 5 (2020) 8656-8668;
      (f) W.C. Yang, M.M. Zhang, J.G. Feng, Adv. Synth. Catal. 362 (2020) 4446-4461;
      (g) K. Sun, J. Lei, Y. Liu, B. Liu, N. Chen, Adv. Synth. Catal. 362 (2020) 3709-3726.

    5. [5]

      (a) Y. He, Z. Li, K. Robeyns, L. van Meervelt, E.V. van der Eycken, Angew. Chem. Int. Ed. 57 (2018) 272-276;
      (b) K. Huang, J.N. Li, G. Qiu, W. Xie, J.B. Liu, RSC Adv. 9 (2019) 33460-33464;
      (c) T. Liu, Y. Li, L. Jiang, et al., Org. Biomol. Chem. 18 (2020) 1933-1939;
      (d) Y. Liu, Q.L. Wang, Z. Chen, et al., Chem. Commun. 55 (2019) 12212-12215;
      (e) Y. Liu, Q.L. Wang, B.Q. Xiong, et al., Synlett 29 (2018) 2396-2403;
      (f) A.A. Nechaev, K. Van Hecke, M. Zaman, et al., J. Org. Chem. 83 (2018) 8170-8182;
      (g) G. Qiu, Z.F. Chen, W. Xie, H. Zhou, Eur. J. Org. Chem. 2019 (2019) 4327-4333;
      (h) Y.C. Wang, J.B. Liu, H. Zhou, et al., J. Org. Chem. 85 (2020) 1906-1914;
      (i) P. Xiong, H.H. Xu, J. Song, H.C. Xu, J. Am. Chem. Soc. 140 (2018) 2460-2464.

    6. [6]

      (a) M. Leonardi, V. Estevez, M. Villacampa, J.C. Menendez, Synthesis 51 (2019) 816-828;
      (b) X.C. Nguyen, X.N. Nguyen, V.T. Nguyen, et al., Vietnam J. Chem. 56 (2018) 1-19;
      (c) X.B. Ding, M.A. Brimble, D.P. Furkert, J. Org. Chem. 83 (2018) 12460-12470;
      (d) C.A. Karg, P. Wang, F. Kluibenschedl, et al., Eur. J. Org. Chem. 2020 (2020) 4499-4509;
      (e) M. Leonardi, V. Estevez, M. Villacampa, J.C. Menendez, Synthesis 51 (2019) 816-828;
      (f) Y. Qiao, J. Yan, J. Jia, et al., J. Nat. Prod. 82 (2019) 318-323;
      (g) Y. Xue, L. Wu, Y. Ding, et al., Nat. Prod. Res. 34 (2020) 341-350.

    7. [7]

      (a) L.N. Kirpotina, I.A. Schepetkin, A.I. Khlebnikov, et al., Biochem. Pharmacol. 142 (2017) 120-132;
      (b) K. Ma, P. Wang, W. Fu, et al., Bioorg. Med. Chem. Lett. 21 (2011) 6724-6727;
      (c) C. Zhuang, Z. Miao, L. Zhu, et al., J. Med. Chem. 55 (2012) 9630-9642;
      (d) C. Peifer, R. Selig, K. Kinkel, et al., J. Med. Chem. 51 (2008) 3814-3824.

    8. [8]

      (a) V.F. Ferreira, M.C.B.V. De Souza, A.C. Cunha, L.O.R. Pereira, M.L.G. Ferreira, Org. Prep. Proced. Int. 33 (2001) 411-454;
      (b) L. Fu, G.W. Gribble, Tetrahedron Lett. 49 (2008) 7352-7354;
      (c) D.M. Shen, M. Shu, K.T. Chapman, Org. Lett. 2 (2000) 2789-2792;
      (d) O. Piloty, Chem. Ber. 1910 (1910) 489-498;
      (e) R. Robinson, G.M. Robinson, J. Chem. Soc. 43 (1918) 639-645;
      (f) A.D. Josey, E.L. Jenner, J. Org. Chem. 27 (1962) 2466-2470;
      (g) R. Grigg, V. Savic, Chem. Commun. (2000) 873-874;
      (h) B.M. Trost, J.P. Lumb, J.M. Azzarelli, J. Am. Chem. Soc. 133 (2011) 740-743;
      (i) D. Andreou, M.G. Kallitsakis, E. Loukopoulos, et al., J. Org. Chem. 83 (2018) 2104-2113;
      (j) Y. Zhou, L. Zhou, L.T. Jesikiewicz, P. Liu, S.L. Buchwald, J. Am. Chem. Soc. 142 (2020) 9908-9914;
      (k) K. Konishi, N. Takeda, M. Yasui, et al., J. Org. Chem. 84 (2019) 14320-14329;
      (l) X. del Corte, A. López-Francés, A. Maestro, et al., J. Org. Chem. 85 (2020) 14369-14383.

    9. [9]

      (a) G. Qiu, K. Zhou, L. Gao, J. Wu, Org. Chem. Front. 5 (2018) 691-705;
      (b) G. Liu, C. Fan, J. Wu, Org. Biomol. Chem. 13 (2015) 1592-1599;
      (c) G. Qiu, L. Lai, J. Cheng, J. Wu, Chem. Commun. 54 (2018) 10405-10414;
      (d) G. Qiu, K. Zhou, J. Wu, Chem. Commun. 54 (2018) 12561-12569;
      (e) S. Ye, M. Yang, J. Wu, Chem. Commun. 56 (2020) 4145-4155;
      (f) S. Ye, G. Qiu, J. Wu, Chem. Commun. 55 (2019) 1013-1019;
      (g) F.S. He, M. Yang, S. Ye, J. Wu, Chin. Chem. Lett. 31 (2020), doi: http://dx.doi.org/10.1016/j.cclet.2020.04.043;
      (h) D. Zheng, Y. An, Z. Li, J. Wu, Angew. Chem. Int. Ed. 53 (2014) 2451-2454;
      (i) D. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 55 (2016) 11925-11929;
      (j) X. Gong, M. Wang, S. Ye, J. Wu, Org. Lett. 21 (2019) 1156-1160;
      (k) S. Ye, D. Zheng, J. Wu, G. Qiu, Chem. Commun. 55 (2019) 2214-2217;
      (l) S. Ye, Y. Li, J. Wu, Z. Li, Chem. Commun. 55 (2019) 2489-2492;
      (m) X. Gong, X. Li, W. Xie, J. Wu, S. Ye, Org. Chem. Front. 6 (2019) 1863-1867;
      (n) S. Ye, T. Xiang, X. Li, J. Wu, Org. Chem. Front. 6 (2019) 2183-2199;
      (o) J. Zhang, W. Xie, S. Ye, J. Wu, Org. Chem. Front. 6 (2019) 2254-2259;
      (p) F.S. He, X. Gong, P. Rojsitthisak, J. Wu, J. Org. Chem. 84 (2019) 13159-13163;
      (q) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. 8 (2019) 893-898;
      (r) K. Zhou, J.B. Liu, W. Xie, S. Ye, J. Wu, Chem. Commun. 56 (2020) 2554-2557;
      (s) S. Ye, K. Zhou, P. Rojsitthisak, J. Wu, Org. Chem. Front. 7 (2020) 14-18;
      (t) J. Zhang, M. Yang, J.B. Liu, F.S. He, J. Wu, Chem. Commun. 56 (2020) 3225-3228;
      (u) X. Gong, M. Yang, J.B. Liu, et al., Green Chem. 22 (2020) 1906-1910;
      (v) X. Gong, M. Yang, J.B. Liu, F.S. He, J. Wu, Org. Chem. Front. 7 (2020) 938-943.

  • 加载中
    1. [1]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    2. [2]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    3. [3]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    7. [7]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    8. [8]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    9. [9]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    10. [10]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    11. [11]

      Qing LiYumei FengYingjie YuYazhou ChenYuhua XieFang LuoZehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612

    12. [12]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    13. [13]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    14. [14]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    15. [15]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    16. [16]

      Ting PanDinghu ZhangGuomei YouXiaoxia WuChenguang ZhangXinyu MiaoWenzhi RenYiwei HeLulu HeYuanchuan GongJie LinAiguo WuGuoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857

    17. [17]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    18. [18]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    19. [19]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    20. [20]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

Metrics
  • PDF Downloads(12)
  • Abstract views(881)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return