Recent advances in the improvement of g-C3N4 based photocatalytic materials
-
* Corresponding authors.
E-mail addresses: sps_zhaog@ujn.edu.cn (G. Zhao), sps_xuxj@ujn.edu.cn (X. Xu).
Citation:
Yupeng Xing, Xiaoke Wang, Shuhua Hao, Xueli Zhang, Xiao Wang, Wenxuan Ma, Gang Zhao, Xijin Xu. Recent advances in the improvement of g-C3N4 based photocatalytic materials[J]. Chinese Chemical Letters,
;2021, 32(1): 13-20.
doi:
10.1016/j.cclet.2020.11.011
S. Sen, S. Ganguly, A. Das, J. Sen, S. Dey, J. Afr. Earth Sci. 122 (2016) 25-31.
doi: 10.1016/j.jafrearsci.2015.06.002
B.H. Kreps, Am. J. Econ. Sociol. 79 (2020) 695-717.
doi: 10.1111/ajes.12336
G. Zhao, H.C. Yang, M.Q. Liu, X.J. Xu, Front. Chem. 6 (2018) 551.
doi: 10.3389/fchem.2018.00551
H.J. Maaß, H.O. Möckel, Chem. Eng. Technol. 43 (2020) 111-118.
doi: 10.1002/ceat.201900384
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109-2125.
doi: 10.1039/C8CS00542G
P. Yu, L.V. Besteiro, Y. Huang, et al., Adv. Opt. Mater. 7 (2019) 1800995.
doi: 10.1002/adom.201800995
J.D. Xiao, H.L. Jiang, Acc. Chem. Res. 52 (2019) 356-366.
doi: 10.1021/acs.accounts.8b00521
G. Zhao, A. Wang, W. He, Y. Xing, X. Xu, Adv. Mater. Interfaces 6 (2019) 1900062.
doi: 10.1002/admi.201900062
X. Ling, Y. Xu, S. Wu, et al., Sci. China Chem. 63 (2020) 386-392.
doi: 10.1007/s11426-019-9672-8
A. Hayat, N. Shaishta, S.K.B. Mane, et al., J. Colloid Interface Sci. 560 (2020) 743-754.
doi: 10.1016/j.jcis.2019.10.088
K.M. Alam, P. Kumar, P. Kar, et al., Nanotechnology 31 (2020) 84001.
doi: 10.1088/1361-6528/ab4e2c
S. Wang, H. Zhao, X. Zhao, et al., Chem. Eng. J. 381 (2020) 122593.
doi: 10.1016/j.cej.2019.122593
Z. Qin, Z. Huang, M. Wang, et al., Appl. Catal. B: Environ. 261 (2020) 118211.
doi: 10.1016/j.apcatb.2019.118211
Z. Liang, G. Ba, H. Li, N. Du, W. Hou, J. Alloys Compd. 815 (2020) 152488.
doi: 10.1016/j.jallcom.2019.152488
Z. Mo, X. She, Z. Chen, et al., Chemcatchem 12 (2020) 1169-1176.
doi: 10.1002/cctc.201901533
S.S. Chen, T. Tsuyoshi, D. Kazunari, Nat. Rev. Mater. 2 (2017) 17050.
doi: 10.1038/natrevmats.2017.50
F. Raziq, J. He, J. Gan, et al., Appl. Catal. B: Environ. 270 (2020) 118870.
doi: 10.1016/j.apcatb.2020.118870
Q. Liu, C. Zeng, Z. Xie, et al., Appl. Catal. B: Environ. 254 (2019) 443-451.
doi: 10.1016/j.apcatb.2019.04.098
K. Sielicki, M. Aleksandrzak, E. Mijowska, Appl. Surf. Sci. 508 (2020) 145144.
doi: 10.1016/j.apsusc.2019.145144
S. Zhao, J. Fang, Y. Wang, Y. Zhang, Y. Zhou, ACS Sustain. Chem. Eng. 7 (2019) 10095-10104.
doi: 10.1021/acssuschemeng.9b01544
Y. Xin, Y. Huang, K. Lin, Y. Yu, B. Zhang, Sci. Bull. 63 (2018) 601-608.
doi: 10.1016/j.scib.2018.03.015
L. Kong, J. Yan, S. Liu, ACS Sustain. Chem. Eng. 7 (2019) 1389-1398.
doi: 10.1021/acssuschemeng.8b05117
Y. Wang, J. Mao, X. Meng, et al., Chem. Rev. 119 (2019) 1806-1854.
doi: 10.1021/acs.chemrev.8b00501
Y. Tu, P. Ren, D. Deng, X. Bao, Nano Energy 52 (2018) 494-500.
doi: 10.1016/j.nanoen.2018.07.062
Y. Xia, B. Cheng, J. Fan, J. Yu, G. Liu, Sci. China Mater. 63 (2020) 552-565.
doi: 10.1007/s40843-019-1234-x
G. Zhao, Y. Cheng, Y. Wu, X. Xu, X. Hao, Small 14 (2018) 1704138.
doi: 10.1002/smll.201704138
X. Huang, Z. Wu, H. Zheng, W. Dong, G. Wang, Green Chem. 20 (2018) 664-670.
doi: 10.1039/C7GC02231J
N. Meng, W. Zhou, Y. Yu, Y. Liu, B. Zhang, ACS Catal. 9 (2019) 10983-10989.
doi: 10.1021/acscatal.9b03895
W. Yu, T. Zhang, Z. Zhao, Appl. Catal. B: Environ. 278 (2020) 119342.
doi: 10.1016/j.apcatb.2020.119342
G. Lu, X. Huang, Y. Li, et al., J. Energy Chem. 43 (2020) 8-15.
doi: 10.1016/j.jechem.2019.07.014
M. Zhou, Z. Chen, P. Yang, et al., Appl. Catal. B: Environ. 276 (2020) 118916.
doi: 10.1016/j.apcatb.2020.118916
W. Ren, J. Cheng, H. Ou, et al., J. Catal. 389 (2020) 636-645.
doi: 10.1016/j.jcat.2020.07.005
Y. Wang, P. Du, H. Pan, et al., Adv. Mater. 31 (2019) 1807540.
doi: 10.1002/adma.201807540
G. Liu, S. Yan, L. Shi, L. Yao, Front. Chem. 7 (2019) 639.
doi: 10.3389/fchem.2019.00639
Y. Yang, M. Wu, X. Zhu, et al., Chin. Chem. Lett. 30 (2019) 2065-2088.
doi: 10.1016/j.cclet.2019.11.001
Q. Liu, F. Wang, Y. Jiang, et al., Carbon 170 (2020) 199-212.
doi: 10.1016/j.carbon.2020.07.080
J. Wang, Y. Wang, W. Wang, et al., Chem. Eng. J. 383 (2020) 123193.
doi: 10.1016/j.cej.2019.123193
J. Shi, L. Mao, C. Cai, et al., Catal. Sci. Technol. 10 (2020) 5896-5902.
doi: 10.1039/D0CY01202E
L. Lin, Z. Lin, J. Zhang, et al., Nat. Catal. 3 (2020) 649-655.
doi: 10.1038/s41929-020-0476-3
Y. Zhu, J. Li, J. Cao, et al., APL Mater. 8 (2020) 41108.
doi: 10.1063/1.5143711
Y. Fang, X. Fu, X. Wang, ACS Mater. Lett. 2 (2020) 975-980.
doi: 10.1021/acsmaterialslett.0c00215
R.P. Liang, L.D. Yu, Y.J. Tong, et al., Chem. Commun. 54 (2018) 14001-14004.
doi: 10.1039/C8CC08353C
Y. Gao, K. Qian, B. Xu, et al., RSC Adv. 10 (2020) 32652-32661.
doi: 10.1039/D0RA06226J
L. Finegold, L.C. Jesse, Nature 238 (1972) 38-40.
doi: 10.1038/238038a0
M.G. Walter, L.W. Emily, R.M. James, et al., Chem. Rev. 110 (2010) 6446-6473.
doi: 10.1021/cr1002326
Q. Liu, L. Wei, Q. Xi, Y. Lei, F. Wang, Chem. Eng. J. 383 (2020) 123792.
doi: 10.1016/j.cej.2019.123792
D.F. Lv, R.F. Shi, Y.W. Chen, et al., Ind. Eng. Chem. Res. 57 (2018) 12215-12224.
doi: 10.1021/acs.iecr.8b02596
N. Zhang, C. Chen, Y.L. Chen, et al., ACS Appl. Energy Mater. 1 (2018) 2016-2023.
doi: 10.1021/acsaem.8b00114
S. Sun, S. Liang, Nanoscale 9 (2017) 10544-10578.
doi: 10.1039/C7NR03656F
Q. Han, N. Chen, J. Zhang, L. Qu, Mater. Horiz. 4 (2017) 832-850.
doi: 10.1039/C7MH00379J
N. -A. Mohamed, H. Ullah, J. Safaei, et al., J. Phys. Chem. C 123 (2019) 9013-9026.
doi: 10.1021/acs.jpcc.9b00217
L. Jing, D. Wang, Y. Xu, et al., J. Colloid Interface Sci. 566 (2020) 171-182.
doi: 10.1016/j.jcis.2020.01.044
B. Antil, L. Kumar, K.P. Reddy, C.S. Gopinath, S. Deka, ACS Sustain. Chem. Eng. 7 (2019) 9428-9438.
doi: 10.1021/acssuschemeng.9b00626
B. Antil, R. Ranjan, C.S. Gopinath, S. Deka, J. Mater. Chem. 8 (2020) 13328-13339.
doi: 10.1039/D0TA02734K
Y. Zheng, Y. Chen, L. Wang, et al., Dalton Trans. 49 (2020) 7598-7604.
doi: 10.1039/D0DT00865F
B. Yan, Z. Chen, Y. Xu, Chem. Asian J. 15 (2020) 2329-2340.
doi: 10.1002/asia.202000253
C. Zhao, G. Tan, J. Huang, W. Yang, H. Ren, A. Xia, ACS Appl. Mater. Interfaces 7 (2015) 23949-23957.
doi: 10.1021/acsami.5b06501
S. Patnaik, S. Martha, K.M. Parida, RSC Adv. 6 (2016) 46929-46951.
doi: 10.1039/C5RA26702A
R. Bhosale, S. Jain, C.P. Vinod, S. Kumar, S. Ogale, ACS Appl. Mater. Interfaces 11 (2019) 6174-6183.
doi: 10.1021/acsami.8b22434
L. Tang, X. Ouyang, B. Peng, et al., Nanoscale 11 (2019) 12198-12209.
doi: 10.1039/C9NR03004B
Y. Shen, Q. Han, J. Hu, et al., ACS Appl. Energy Mater. 3 (2020) 6561-6572.
doi: 10.1021/acsaem.0c00750
G. Liao, Y. Gong, L. Zhang, et al., Energy Environ. Sci. 12 (2019) 2080-2147.
doi: 10.1039/C9EE00717B
N. Wang, J. Wang, J. Hu, et al., ACS Appl. Energy Mater. 1 (2018) 2866-2873.
doi: 10.1021/acsaem.8b00526
L. Lu, X. Xu, K. An, Y. Wang, F. Shi, ACS Sustain. Chem. Eng. 6 (2018) 11869-11876.
doi: 10.1021/acssuschemeng.8b02153
W. Iqbal, B. Yang, X. Zhao, et al., Catal. Sci. Technol. 10 (2020) 549-559.
doi: 10.1039/C9CY02111F
W. Li, Z. Guo, L. Jiang, et al., Chem. Sci. 11 (2020) 2716-2728.
doi: 10.1039/C9SC05060D
J. Barrio, L. Lin, X. Wang, M. Shalom, ACS Sustain. Chem. Eng. 6 (2018) 519-530.
doi: 10.1021/acssuschemeng.7b02807
G. Zhuge, W. Zhang, ChemCatChem 11 (2018) 1045-1056.
M. Xiao, Z. Wang, M. Lyu, et al., Adv. Mater. 31 (2019) 1801369.
doi: 10.1002/adma.201801369
W. Liu, Z. Zhang, D. Zhang, et al., RSC Adv. 10 (2020) 28848-28855.
doi: 10.1039/D0RA03802D
C. Yao, A. Yuan, Z. Wang, et al., J. Mater. Chem. 7 (2019) 13071-13079.
doi: 10.1039/C9TA03253C
C. Yao, R. Wang, Z. Wang, et al., J. Mater. Chem. 7 (2019) 27547-27559.
doi: 10.1039/C9TA09201C
Z. Wang, H. Yu, Y. Xiao, et al., Chem. Eng. J. 394 (2020) 12501.
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
doi: 10.1002/adfm.201200922
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135 (2013) 18-21.
doi: 10.1021/ja308249k
S. Yang, Y. Gong, J. Zhang, et al., Adv. Mater. 25 (2013) 2452-2456.
doi: 10.1002/adma.201204453
J. Xu, L. Zhang, R. Shi, Y. Zhu, J. Mater. Chem. 1 (2013) 14766-14772.
doi: 10.1039/c3ta13188b
F. Cheng, H. Wang, X. Dong, Chem. Commun. 51 (2015) 7176-7179.
doi: 10.1039/C5CC01035G
F. Cheng, J. Yan, C. Zhou, et al., J. Colloid Interfaces Sci. 468 (2016) 103-109.
doi: 10.1016/j.jcis.2016.01.044
J. Yan, X. Han, J. Qian, et al., J. Mater. Sci. 52 (2017) 13091-13102.
doi: 10.1007/s10853-017-1419-5
J. Qian, J. Yan, C. Shen, et al., J. Mater. Sci. 53 (2018) 12103-12114.
doi: 10.1007/s10853-018-2509-8
S. Han, L. Yu, H. Zhang, et al., ChemCatChem 11 (2019) 6203-6207.
doi: 10.1002/cctc.201901399
B. Zhang, T.J. Zhao, H.H. Wang, ACS Appl. Mater. Interfaces 11 (2019) 34922-34929.
doi: 10.1021/acsami.9b10123
H. Huang, K. Xiao, N. Tian, et al., J. Mater. Chem. 5 (2017) 17452-17463.
doi: 10.1039/C7TA04639A
J. Barrio, M. Shalom, ACS Appl. Mater. Interfaces 10 (2018) 39688-39694.
doi: 10.1021/acsami.8b13873
N.N. Vu, S. Kaliaguine, T.O. Do, ACS Sustain. Chem. Eng. 8 (2020) 853-863.
doi: 10.1021/acssuschemeng.9b05083
W. Wang, J.C. Yu, Z. Shen, D.K.L. Chan, T. Gu, Chem. Commun. 50 (2014) 10148-10150.
doi: 10.1039/C4CC02543A
K. Ding, L. Wen, M. Huang, et al., Phys. Chem. Chem. Phys. 18 (2016) 19217-19226.
doi: 10.1039/C6CP02169G
M.Z. Rahman, K. Davey, S.Z. Qiao, J. Mater. Chem. 6 (2018) 1305-1322.
doi: 10.1039/C7TA10404A
F. Su, C. Xu, Y. Yu, W. Zhang, ChemCatChem 8 (2016) 3527-3535.
doi: 10.1002/cctc.201600928
H. Zhang, X. Han, H. Yu, Y. Zou, X. Dong, Sep. Purif. Technol. 226 (2019) 128-137.
doi: 10.1016/j.seppur.2019.05.066
W. Che, W. Cheng, T. Yao, et al., J. Am. Chem. Soc. 139 (2017) 3021-3026.
doi: 10.1021/jacs.6b11878
K. Hu, M. Yao, Z. Yang, et al., Nanoscale 12 (2020) 12300-12307.
doi: 10.1039/D0NR01542C
G. Xu, Z. Wang, Q. Liu, et al., ChemistrySelect 4 (2019) 13064-13070.
doi: 10.1002/slct.201903347
Q. Wan, F. Wei, Z. Ma, M. Anpo, S. Lin, Adv. Theory Simul. 2 (2019) 1800174.
doi: 10.1002/adts.201800174
F. Wei, Y. Liu, H. Zhao, et al., Nanoscale 10 (2018) 4515-4522.
doi: 10.1039/C7NR09660G
G. Zhang, C. He, P. Zhang, H. Mi, Appl. Catal. B Environ. 283 (2020) 119636.
S. Thaweesak, S. Wang, M. Lyu, et al., Dalton Trans. 46 (2017) 10714-10720.
doi: 10.1039/C7DT00933J
F. He, S. Wang, H. Zhao, et al., Appl. Surf. Sci. 485 (2019) 70-80.
doi: 10.1016/j.apsusc.2019.04.164
P. Kumar, P. Kar, A.P. Manuel, et al., Adv. Opt. Mater. 8 (2020) 1901275.
doi: 10.1002/adom.201901275
W. Iqbal, B. Yang, X. Zhao, et al., Catal. Sci. Technol. 10 (2020) 549-559.
doi: 10.1039/C9CY02111F
Z. -A. Lan, G. Zhang, X. Wang, Appl. Catal. B: Environ. 192 (2016) 116-125.
doi: 10.1016/j.apcatb.2016.03.062
N. Lu, X. Yan, H. Kobayashi, et al., Appl. Catal. B: Environ. 279 (2020) 119378.
doi: 10.1016/j.apcatb.2020.119378
S. Wang, L. Chen, X. Zhao, et al., Appl. Catal. B: Environ. 278 (2020) 119312.
doi: 10.1016/j.apcatb.2020.119312
H. Jiang, C. Zang, Y. Zhang, et al., Catal. Sci. Technol. 10 (2020) 5964-5972.
doi: 10.1039/D0CY00656D
L. Chen, Y. Wang, C. Wu, et al., Nanoscale 12 (2020) 13484-13490.
doi: 10.1039/D0NR02556A
E.D. Koutsouroubi, I. Vamvasakis, I.T. Papadas, et al., ChemPlusChem 85 (2020) 1366-1366.
doi: 10.1002/cplu.202000286
L. Liu, X. Song, X. Kong, Q. Duan, E. Zhu, RSC Adv. 10 (2020) 9116-9125.
doi: 10.1039/D0RA00960A
Y. Tian, H. Wang, H. Li, et al., J. Mater. Chem. A 8 (2020) 4647-4676.
doi: 10.1039/C9TA13487E
C. Jiang, H. Wang, Y. Wang, H. Ji, Appl. Catal. B Environ. 277 (2020) 119235.
doi: 10.1016/j.apcatb.2020.119235
H. Shen, M. Wang, X. Zhang, et al., Fuel 280 (2020) 118618.
doi: 10.1016/j.fuel.2020.118618
H. Zhang, G. Tang, X. Wan, J. Xu, H. Tang, Appl. Surf. Sci. 530 (2020) 147234.
doi: 10.1016/j.apsusc.2020.147234
M. Jourshabani, B.K. Lee, Z. Shariatinia, Appl. Catal. B: Environ. 276 (2020) 119157.
doi: 10.1016/j.apcatb.2020.119157
H. Salari, Mater. Res. Bull. 131 (2020) 110979.
doi: 10.1016/j.materresbull.2020.110979
F. Yang, Q. Zhang, J. Zhang, et al., Appl. Catal. B: Environ. 278 (2020) 119290.
doi: 10.1016/j.apcatb.2020.119290
Z. Zhao, B. Shen, Z. Hu, et al., J. Hazard. Mater. 400 (2020) 123236.
doi: 10.1016/j.jhazmat.2020.123236
G. Di, Z. Zhu, H. Zhang, et al., Chem. Eng. J. 401 (2020) 126061.
doi: 10.1016/j.cej.2020.126061
G. Zhao, S. Hao, J. Guo, et al., J. Catal. 42 (2021) 501-509.
Q. Hao, Y. Song, Z. Mo, et al., Sol. RRL 4 (2020) 1900538.
doi: 10.1002/solr.201900538
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176