Citation: Chen Yan, Jing Sun, Chao-Guo Yan. Convenient construction of spiro[indoline-3, 5'-pyrrolo[3, 4-c]carbazole] and spiro[indene-2, 5'-pyrrolo[3, 4-c]carbazole] via acid-catalyzed Diels-Alder reaction[J]. Chinese Chemical Letters, ;2021, 32(3): 1253-1256. doi: 10.1016/j.cclet.2020.08.052 shu

Convenient construction of spiro[indoline-3, 5'-pyrrolo[3, 4-c]carbazole] and spiro[indene-2, 5'-pyrrolo[3, 4-c]carbazole] via acid-catalyzed Diels-Alder reaction

    * Corresponding author.
    E-mail address: cgyan@yzu.edu.cn (C.-G. Yan).
  • Received Date: 21 July 2020
    Revised Date: 21 August 2020
    Accepted Date: 31 August 2020
    Available Online: 2 September 2020

Figures(7)

  • p-TsOH catalyzed Diels-Alder reaction of 3-(indol-3-yl)maleimides with 3-phenacylideneoxindoles in toluene at 80 ℃ for two hours afforded cis/trans isomers of 3a', 4′, 6′, 10c'-tetrahydrospiro[indoline-3, 5′-pyrrolo[3, 4-c]carbazoles] in nearly comparable yields, which could be easily converted to the corresponding 4′, 6′-dihydrospiro[indoline-3, 5′-pyrrolo[3, 4-c]carbazole] in high yields and with high diastereoselectivity by further DDQ oxidation., the similar reaction of 3-(indol-3-yl)maAdditionallyleimides with 2-arylidene-1, 3-indanediones in toluene 80 ℃ and sequential DDQ oxidation afforded functionalized dihydrospiro[indene-2, 5′-pyrrolo[3, 4-c]carbazoles] as major products.
  • 加载中
    1. [1]

      (a) L.T. Shen, P.L. Shao, S. Ye, Adv. Synth. Catal. 353 (2011) 1943-1948;
      (b) T.Z. Li, Y. Jiang, Y.Q. Guan, et al., Chem. Commun. 50 (2014) 10790-10792;
      (c) T.P. Gao, J.B. Lin, X.Q. Hu, et al., Chem. Commun. 50 (2014) 8934-8936;
      (d) Y. Que, T. Li, C. Yu, et al., Org. Chem. 80 (2015) 3289-3294.

    2. [2]

      (a) G.J. Mei, F. Shi, Chem. Commun. 54 (2018) 6607-6621;
      (b) G.J. Mei, D. Li, G.X. Zhou, et al., Chem. Commun. 53 (2017) 10030-10033;
      (c) J.L. Wu, B.X. Du, Y.C. Zhang, et al., Adv. Synth. Catal. 358 (2016) 2777-2790;
      (d) Q.N. Zhu, Y.C. Zhang, M.M. Xu, et al., J. Org. Chem. 81 (2016) 7898-7907.

    3. [3]

      (a) K. Thevissen, A. Marchand, P. Chaltin, et al., Curr. Med. Chem. 16 (2009) 2205-2211;
      (b) R. Hesse, O. Kataeva, A.W. Schmidt, et al., Chem. Eur. J. 20 (2014) 9504-9509;
      (c) M.S. Shaikh, R. Karpoormath, N. Thapliyal, et al., Anticancer Agents Med. Chem. 15 (2015) 1049-1065;
      (d) S.P. Zhu, W.Y. Wang, K. Fang, et al., Chin. Chem. Lett. 25 (2014) 229-233.

    4. [4]

      (a) H.J. Jiang, J. Sun, J.L. Zhang, Curr. Org. Chem. 16 (2012) 2014-2025;
      (b) K.T. Kamtekar, A.P. Monkman, M.R. Bryce, Adv. Mater. 22 (2010) 572-582;
      (c) M.K. Hong, M.K. Ravva, P. Winget, et al., Chem. Mater. 28 (2016) 5791-5798;
      (d) B.W. Li, X.A. Song, X. Jiang, et al., Chin. Chem. Lett. 31 (2020) 1188-1192;
      (e) Y. Xiong, J.J. Zeng, et al., Chin. Chem. Lett. 30 (2019) 592-596.

    5. [5]

      (a) H.J. Knolker, R.R. Kethiri, Chem. Rev. 102 (2002) 4303-4427;
      (b) A.W. Schmidt, K.R. Reddy, H.J. Knlker, Chem. Rev. 112 (2012) 3193-3328;
      (c) S. Lancianesi, A. Palmieri, M. Petrini, Chem. Rev. 114 (2014) 7108-7149;
      (d) S.Z. Zhao, R.B. Andrade, J. Am. Chem. Soc. 135 (2013) 13334-13337;
      (e) T.L. Lan, H.J. Qin, W.T. Chen, et al., Chin. Chem. Lett. 31 (2020) 357-360.

    6. [6]

      (a) V.P. Kumar, K.K. Gruner, O. Kataeva, et al., Angew. Chem. Int. Ed. 52 (2013) 11073-11077;
      (b) S.H. Cho, J. Yoon, S. Chang, J. Am. Chem. Soc. 133 (2011) 5996-6005;
      (c) A.C. Hernandez-Perez, S.K. Collins, Angew. Chem. Int. Ed. 52 (2013) 12696-12700;
      (d) H. Gao, Q.L. Xu, M. Yousufuddin, et al., Angew. Chem. Int. Ed. 53 (2014) 2701-2705.

    7. [7]

      (a) C. Liu, X.Q. Han, X. Wang, et al., J. Am. Chem. Soc. 126 (2004) 3700-3701;
      (b) N. Kuroda, Y. Takah ashi, K. Yoshinaga, et al., Org. Lett. 8 (2006) 1843-1845;
      (c) F. Zhao, N. Li, Y.F. Zhu, et al., Org. Lett. 18 (2016) 1506-1509;
      (d) S.Z. Zhao, R.B. Andrade, J. Org. Chem. 82 (2017) 521-531.

    8. [8]

      (a) C. Gioia, A. Hauville, L. Bernardi, et al., Angew. Chem. Int. Ed. 47 (2008) 9236-9239;
      (b) Y. Tao, F. Zhang, C.Y. Tang, et al., Asian J. Org. Chem. 3 (2014) 1292-1301;
      (c) L.J. Zhou, B. Xu, J.L. Zhang, Angew. Chem. Int. Ed. 54 (2015) 9092-9096;
      (d) J.W. Ren, Z.F. Zhou, J.A. Xiao, et al., Eur. J. Org. Chem. 7 (2016) 1264-1268.

    9. [9]

      (a) Y.T. Yang, J.F. Zhu, G.C. Liao, et al., Med. Chem. 25 (2018) 2233-2244;
      (b) N. Ye, H.Y. Chen, E.A. Wold, et al., ACS Infect. Dis. 2 (2016) 382-392;
      (c) B. Yu, D.Q. Yu, H.M. Liu, Eur. J. Med. Chem. 97 (2015) 673-698;
      (d) B. Yu, Z.Q. Yu, P.P. Qi, et al., Eur. J. Med. Chem. 95 (2015) 35-40.

    10. [10]

      (a) G.S. Singh, Z.Y. Desta, Chem. Rev. 112 (2012) 6104-6155;
      (b) L. Hong, R. Wang, Adv. Synth. Catal. 355 (2013) 1023-1052;
      (c) Y. Liu, H. Wang, J. Wan, Asian J. Org. Chem. 2 (2013) 374-386;
      (d) Z. Liu, N. Li, X. Huang, et al., Tetrahedron. 70 (2014) 2406-2415.

    11. [11]

      (a) B. Tan, G. Hernandez-Torres, C.F. Barbas, J. Amer. Chem. Soc. 133 (2011) 12354-12357;
      (b) H.F. Zheng, P. He, Y.B. Liu, et al., Chem. Commun. 50 (2014) 8794-8796;
      (c) P. Sharma, N.P. Kumar, N.H. Krishna, et al., Org. Chem. Front. 3 (2016) 1503-1508;
      (d) Z.H. You, Y.H. Chen, Y. Tang, et al., Org. Lett. 20 (2018) 6682-6686.

    12. [12]

      (a) Y.K. Liu, M. Nappi, E. Arceo, et al., J. Am. Chem. Soc. 133 (2011) 15212-15218;
      (b) Y. Wang, M.S. Tu, L. Yin, et al., J. Org. Chem. 80 (2015) 3223-3232;
      (c) J.W. Ren, J. Wang, J.A. Xiao, et al., J. Org. Chem. 82 (2017) 6441-6449;
      (d) L.J. Huang, J. Weng, S. Wang, et al., Adv. Synth. Catal. 357 (2015) 993-1003.

    13. [13]

      (a) R.Y. Yang, J. Sun, Y. Tao, et al., J. Org. Chem. 82 (2017) 13277-13287;
      (b) R.Y. Yang, J. Sun, Q. Sun, C.G. Yan, J. Org. Chem. 83 (2018) 5909-5919;
      (c) D.Q. Wang, J. Sun, C.G. Yan, Chemistryselect 4 (2019) 10550-10554;
      (d) J. Sun, R.Y. Yang, S.C. Zhan, et al., ChemistrySelect 4 (2019) 10100-10103;
      (e) R. Ye, C.G. Yan, Eur. J. Org. Chem (2019) 5882-5886;
      (f) S.C. Zhan, J. Sun, R.Z. Liu, et al., Org. Biomol. Chem. 18 (2020) 163-168.

    14. [14]

      (a) Y.L. An, Z.Y. Shao, J. Chen, et al., Synthesis 45 (2013) 2719-2726;
      (b) E. Pereira, A. Youssef, M. El-Ghozzi, et al., Tetrahedron Lett. 55 (2014) 834-837.

    15. [15]

      (a) H. Henon, S. Messaoudi, B. Hugon, et al., Tetrahedron 61 (2005) 5599-5614;
      (b) E. Conchon, F. Anizon, B. Aboab, et al., Bioorg. Med. Chem. 16 (2008) 4419-4430;
      (c) B. Hugon, B. Pfeiffer, P. Renard, et al., Tetrahedron Lett. 44 (2003) 3935-3937;
      (d) E. Conchon, F. Anizon, B. Aboa, et al., J. Med. Chem. 50 (2007) 4669-4680;
      (e) H. Hénon, F. Anizon, N. Kucharczyk, et al., Synthesis (2006) 711-715;
      (f) Y.L. An, Z.H. Yang, H.H. Zhang, et al., Org. Lett. 18 (2016) 152-155.

    16. [16]

      (a) J. Sun, Y. Sun, H. Gong, et al., Org. Lett. 14 (2012) 5172-5175;
      (b) J. Sun, Y.J. Xie, C.G. Yan, J. Org. Chem. 78 (2013) 8354-8365;
      (c) H. Gao, J. Sun, C.G. Yan, J. Org. Chem. 79 (2014) 4131-4136;
      (d) Y. Han, Y.J. Sheng, C.G. Yan, Org. Lett. 16 (2014) 2654-2657;
      (e) J. Sun, L. Chen, H. Gong, et al., Org. Biomol. Chem. 13 (2015) 5905-5917;
      (f) L. Chen, J. Sun, J. Xie, et al., Org. Biomol. Chem. 14 (2016) 6497-6507.

    17. [17]

      (a) R.G. Shi, X.H. Wang, C.G. Yan, et al., Chem. Commun. 52 (2016) 6280-6283;
      (b) J. Cao, J. Sun, C.G. Yan, Org. Biomol. Chem. 16 (2018) 4170-4175;
      (c) R.Z. Liu, R.G. Shi, J. Sun, et al., Org. Chem. Front. 4 (2017) 354-357;
      (d) J. Sun, Y. Zhang, R.G. Shi, et al., Org. Biomol. Chem. 17 (2019) 3978-3983;
      (e) J. Cao, F. Yang, J. Sun, et al., J. Org. Chem. 84 (2019) 622-635.

  • 加载中
    1. [1]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    5. [5]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    6. [6]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    7. [7]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    8. [8]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    9. [9]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    10. [10]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    11. [11]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    12. [12]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    13. [13]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    14. [14]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    15. [15]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    16. [16]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    17. [17]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

Metrics
  • PDF Downloads(6)
  • Abstract views(1290)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return