Citation: Baobao Yu, Zhu-Jun Yao. A gram-scale laboratory synthesis of Annonaceous acetogenin mimic AA005[J]. Chinese Chemical Letters, ;2021, 32(1): 408-412. doi: 10.1016/j.cclet.2020.06.007 shu

A gram-scale laboratory synthesis of Annonaceous acetogenin mimic AA005

    * Corresponding author.
    E-mail address: yaoz@nju.edu.cn (Z.-J. Yao).
  • Received Date: 6 May 2020
    Revised Date: 22 May 2020
    Accepted Date: 3 June 2020
    Available Online: 5 June 2020

Figures(5)

  • AA005 (1), a potent anticancer mimicking molecule of natural Annonaceous acetogenin, features a central C2-symmetric triglycol moiety and three stereogenic centers. To support ongoing animal studies, a scalable 10-step synthesis of AA005 (1) has been studied, optimized and accomplished in this work, starting from commercially available economic materials ethylene glycol and (R)-epichlorohydrin. A regio- and stereo-controlled BF3·Et2O-promoted epoxide opening of (R)-epichlorohydrin with ethylene glycol was investigated, optimized and successfully applied to the scalable preparation of the crucial fragment 6a with C2-symmetry. Further successive epoxide openings elaborated both two side chains and the whole skeleton with proper nucleophiles and electrophiles. Comparison and optimization of the reaction sequences finally led to completion of a new multi-gram synthesis of AA005 (1) with satisfactory enantiomeric and diastereomeric purity.
  • 加载中
    1. [1]

      (a) A. Bermejo, B. Figadere, M.C. Zafra-Polo, et al., Nat. Prod. Rep. 22 (2005) 269-303;
      (b) T.S. Hu, Y.L. Wu, Z.J. Yao, Recent progress on the chemical synthesis of Annonaceous acetogenins and their structurally modified mimics, in: Y.L. Wu, Z.J. Yao (Eds.), Synthesis of Natural Products: A Scientific and Artistic Exploration, Science Press, Beijing, 2006, pp. 58-90;
      (c) J.L. McLaughlin, J. Nat. Prod. 71 (2008) 1311-1321;
      (d) S. Gajalakshmi, R. Divya, V. Divya-Deepika, et al., Int. J. Pharm. Sci. Rev. Res. 10 (2011) 24-29;
      (e) S.M. Agarwal, M.I. Khan, M. Mangal, Anticancer Agents Med. Chem. 16 (2016) 138-159.

    2. [2]

      D. Cortes, B. Figadere, A. Cave, Phytochemistry 32 (1993) 1467-1473.  doi: 10.1016/0031-9422(93)85161-J

    3. [3]

      (a) S. Hoppen, U. Emde, T. Friedrich, et al., Angew. Chem. Int. Ed. 39 (2000) 2099-2102;
      (b) T. Gallardo, M.C. Zafra-Polo, J.R. Tormo, et al., J. Med. Chem. 43 (2000) 4793-4800;
      (c) S. Arndt, U. Emde, S. Bäurle, et al., Chem. Eur. J. 7 (2001) 993-1005;
      (d) N. Kojima, T. Tanaka, Molecules 14 (2009) 3621-3661;
      (e) T. Matsumoto, N. Kojima, A. Akatsuka, et al., Tetrahedron 73 (2017) 2359-2366.

    4. [4]

      (a) B.B. Zeng, Y. Wu, Q. Yu, et al., Angew. Chem. Int. Ed. 39 (2000) 1934-1937;
      (b) S. Jiang, Z.H. Liu, G. Sheng, et al., J. Org. Chem. 67 (2002) 3404-3408;
      (c) B.B. Zeng, Y. Wu, S. Jiang, et al., Chem. Eur. J. 9 (2003) 282-290;
      (d) S. Jiang, Y. Li, X.G. Chen, et al., Angew. Chem. Int. Ed. 43 (2004) 329-334;
      (e) H.X. Liu, G.R. Huang, H.M. Zhang, et al., ChemBioChem 8 (2007) 172-177;
      (f) Q.C. Xiao, Y.Q. Liu, Y.T. Qiu, et al., J. Med. Chem. 54 (2011) 525-533;
      (g) B. Han, Y.X. Cao, Z.M. Li, et al., Acta Pharmacol. Sin. 40 (2019) 231-242.

    5. [5]

      (a) J.D. White, T.C. Somers, G.N. Reddy, J. Org. Chem. 57 (1992) 4991-4998;
      (b) Z.J. Yao, Y.L. Wu, Tetrahedron Lett. 35 (1994) 157-160;
      (c) Z.J. Yao, Y.L. Wu, J. Org, Chem. 60 (1995) 1170-1176.

    6. [6]

      (a) P. Duret, B. Figadere, R. Hocquemiller, A. Cave, Tetrahedron Lett. 38 (1997) 8849-8852;
      (b) Q. Yu, Y.K. Wu, Y.L. Wu, et al., Chirality 12 (2000) 127-129.

    7. [7]

      (a) X.P. Gu, I. Ikeda, M. Okahara, Synthesis 16 (1985) 649-651;
      (b) Z.G. Tang, C.W. Zhang, Y.L. Yue, Huaxue Shiji 2 (1994) 107-109;
      (c) Q.G. Huang, Guangxi Chem. Ind. 3 (1996) 13-14;
      (d) Z.X. Liu, L. Wang, C.Y. Bao, et al., Biomacromolecules 12 (2011) 2389-2395.

    8. [8]

      (a) D.J. Yue, Hubei Chem. Ind. 1 (1994) 19-21;
      (b) Y. Zhang, Y.S. Xu, S.J. Qiu, L. Yang, Chem. Ind. & Eng. 31 (2014) 31-36.

    9. [9]

      (a) M. Tokunaga, J.F. Larrow, F. Kakiuchi, E.N. Jacobsen, Science 277 (1997) 936-938;
      (b) S.E. Schaus, B.D. Brandes, J.F. Larrow, et al., J. Am. Chem. Soc. 124 (2002) 1307-1315;
      (c) L.P.C. Nielsen, C.P. Stevenson, D.G. Blackmond, E. N. Jacobsen, J. Am. Chem. Soc. 126 (2004) 1360-1362.

    10. [10]

      F.D. Liu, K.K. Guo, J.M. Yuan, High Perform. Polym. 26 (2014) 326-334.  doi: 10.1177/0954008313514083

    11. [11]

      (a) A. Furstner, M. Albert, J. Mlynarski, M. Matheu, E. DeClercq, J. Am. Chem. Soc. 125 (2003) 13132-13142;
      (b) R. Schmidt, M. Ostermeier, R. Schobert, J. Org. Chem. 82 (2017) 9126-9132.

    12. [12]

      M. Yamaguchi, I. Hirao, Tetrahedron Lett. 24 (1983) 391-394.  doi: 10.1016/S0040-4039(00)81416-1

    13. [13]

      M.P. Groziak, A. Koohang, J. Org. Chem. 57 (1992) 940-944.  doi: 10.1021/jo00029a027

    14. [14]

      T. Durand, A. Guy, J.P. Vidal, J.C. Rossi, J. Org. Chem. 67 (2002) 3615-3624.  doi: 10.1021/jo0109624

    15. [15]

      (a) D.J. Hart, W.P. Hong, L.Y. Hsu, J. Org. Chem. 52 (1987) 4665-4673;
      (b) J.A. Marshall, M.Z. Chen, J. Org. Chem. 62 (1997) 5996-6000.

    16. [16]

      (a) T.R. Hoye, Z.X. Ye, J. Am. Chem. Soc. 118 (1996) 1801-1802;
      (b) D.J. Dixon, S.V. Ley, D.J. Reynolds, Angew. Chem. Int. Ed. 39 (20003622-3626;
      (c) S. Takahashi, A. Kubota, T. Nakata, Angew. Chem. Int. Ed. 41 (2002) 4751-4754.

    17. [17]

      J.K. Fu, H.J. Shen, Y.Y. Chang, et al., Chem. Eur. J. 20 (2014) 12881-12888.  doi: 10.1002/chem.201403756

    18. [18]

      (a) T. Vijai-Kumar-Reddy, B.L. A. Prabhavathi-Devi, R.B.N. Prasad, P. Sujitha, C. Ganesh-Kumar, Eur. J. Med. Chem. 67 (2013) 384-389;
      (b) Y.J. Chen, S. Jin, J. Xi, Z.J. Yao, Tetrahedron 70 (2014) 4921-4928.

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    3. [3]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    4. [4]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    5. [5]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    6. [6]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    7. [7]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    8. [8]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    9. [9]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    10. [10]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    11. [11]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    12. [12]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    13. [13]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    14. [14]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    15. [15]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    16. [16]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    17. [17]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    18. [18]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    19. [19]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    20. [20]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

Metrics
  • PDF Downloads(10)
  • Abstract views(960)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return