Recent advances in theoretical studies on ligand-controlled selectivity of nickel- and palladium-catalyzed cross-coupling reactions
* Corresponding author.
E-mail address: hujunxie@gmail.com (H. Xie).
Citation:
Mengna Cao, Hujun Xie. Recent advances in theoretical studies on ligand-controlled selectivity of nickel- and palladium-catalyzed cross-coupling reactions[J]. Chinese Chemical Letters,
;2021, 32(1): 319-327.
doi:
10.1016/j.cclet.2020.04.005
T. Sperger, I.A. Sanhueza, I. Kalvet, F. Schoenebeck, Chem. Rev. 115(2015) 9532-9586.
doi: 10.1021/acs.chemrev.5b00163
S. Sakaki, Y.Y. Ohnishi, H. Sato, Chem. Rec. 10(2010) 29-45.
doi: 10.1002/tcr.200900019
M. García-Melchor, X. Solans-Monfort, G. Ujaque, C-C bond formation, in: J.R. Poeppelmeier (Ed. ), Comprehensive Inorganic Chemistry Ⅱ, Vol. 9, Elsevier, Amsterdam, 2013, pp. 767-805.
T. Fan, Z. Lin, Theoretical insights into transition metal-catalyzed reactions of carbon dioxide. Understanding organometallic reaction mechanisms and catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, pp. 121-144.
M. García-Melchor, A.A.C. Braga, A. Lledo's, G. Ujaque, F. Maseras, Acc. Chem. Res. 46(2013) 2626-2634.
doi: 10.1021/ar400080r
K.J. Bonney, F. Schoenebeck, Chem. Soc. Rev. 43(2014) 6609-6638.
doi: 10.1039/C4CS00061G
D. Balcells, E. Clot, O. Eisenstein, Chem. Rev. 110(2010) 749-823.
doi: 10.1021/cr900315k
W.M.C. Sameera, F. Maseras, WIREs Comput. Mol. Sci. 2(2012) 375-385.
doi: 10.1002/wcms.1092
Y.Y. Jiang, Z. Li, J. Shi, Organometallics 31(2012) 4356-4366.
doi: 10.1021/om300329z
D.G. Musaev, T.M. Figg, A.L. Kaledin, Chem. Soc. Rev. 43(2014) 5009-5031.
doi: 10.1039/C3CS60447K
D. Balcells, O. Eisenstein, Theoretical studies on the reaction mechanism of metal-assisted C-H activation, in: J.R. Poeppelmeier (Ed. ), Comprehensive Inorganic Chemistry Ⅱ, Vol. 9, Elsevier, Amsterdam, 2013, pp. 695-726.
S.I. Gorelsky, Coord. Chem. Rev. 257(2013) 153-164.
doi: 10.1016/j.ccr.2012.06.016
L. Xue, Z. Lin, Chem. Soc. Rev. 39(2010) 1692-1705.
doi: 10.1039/B814973A
H.J. Xie, T. Fan, Q.F. Lei, W.J. Fang, Sci. China Chem. 59(2016) 1432-1447.
doi: 10.1007/s11426-016-0018-2
F. Schoenebeck, Ligand, additive, and solvent effects in palladium catalysis-mechanistic studies en route to catalyst design. Understanding organometallic reaction mechanisms and catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014, pp. 69-92.
P. Liu, K.N. Houk, Inorg. Chim. Acta 369(2011) 2-14.
doi: 10.1016/j.ica.2010.12.042
H.J. Xie, Q. Sun, G.R. Ren, Z.X. Cao, J. Org. Chem. 79(2014) 11911-11921.
doi: 10.1021/jo501618k
A.A.C. Braga, G. Ujaque, F. Maseras, Computational modeling for homogeneous and enzymatic catalysis, in: K. Morokuma, D.G. Musaev (Eds. ), A Knowledge-base for Designing Efficient Catalysis, WILEY-VCH GmbH & Co., KGaA, Weinheim, 2008, pp. 109-130.
G.B. Smith, G.C. Dezeny, D.L. Hughes, A.O. King, T.R. Verhoeven, J. Org. Chem. 59(1994) 8151-8156.
doi: 10.1021/jo00105a036
U. Christmann, R. Vilar, Angew. Chem. Int. Ed. 44(2005) 366-374.
doi: 10.1002/anie.200461189
M. Besora, C. Gourlaouen, B. Yates, F. Maseras, Dalton Trans 40(2011) 11089-11094.
doi: 10.1039/c1dt10983a
H.M. Senn, T. Ziegler, Organometallics 23(2004) 2980-2988.
doi: 10.1021/om049963n
E. Lyngvi, F. Schoenebeck, Tetrahedron 69(2013) 5715-5718.
doi: 10.1016/j.tet.2013.03.095
S. Kozuch, C. Amatore, A. Jutand, S. Shaik, Organometallics 24(2005) 2319-2330.
doi: 10.1021/om050160p
L.J. Goossen, D. Koley, H.L. Hermann, W. Thiel, Organometallics 24(2005) 2398-2410.
doi: 10.1021/om0500220
J.N. Harvey, F. Himo, F. Maseras, L. Perrin, ACS Catal 9(2019) 6803-6813.
doi: 10.1021/acscatal.9b01537
N. Fey, M.F. Haddow, J.N. Harvey, C.L. McMullin, A.G.A. Orpen, Dalton Trans (2009) 8183-8196.
J. Jover, N. Fey, J.N. Harvey, et al., Organometallics 29(2010) 6245-6258.
doi: 10.1021/om100648v
J. Jover, N. Fey, J.N. Harvey, et al., Organometallics 31(2012) 5302-5306.
doi: 10.1021/om300312t
Y.T. Zhang, M.N. Cao, G.Q. Ge, et al., Sci. Sin. Chim. 49(2019) 380-390.
H.J. Xie, F.R. Lin, Q.F. Lei, W.J. Fang, Organometallics 32(2013) 6957-6968.
doi: 10.1021/om400503x
H.J. Xie, H. Zhang, Z.Y. Lin, Organometallics 32(2013) 2336-2343.
doi: 10.1021/om301215a
H.J. Xie, H. Zhang, Z.Y. Lin, New J. Chem. 37(2013) 2856-2861.
doi: 10.1039/c3nj00531c
H.J. Xie, F.R. Lin, L. Yang, et al., J. Organomet. Chem. 745-746(2013) 417-422.
doi: 10.1016/j.jorganchem.2013.08.015
H.J. Xie, F.R. Lin, Q.F. Lei, W.J. Fang, J. Phys. Org. Chem. 26(2013) 933-938.
doi: 10.1002/poc.3192
N. Fey, A.G. Orpen, J.N. Harvey, Coord. Chem. Rev. 253(2009) 704-722.
doi: 10.1016/j.ccr.2008.04.017
C.L. McMullin, J. Jover, J.N. Harvey, N. Fey, Dalton Trans 39(2010) 10833-10836.
doi: 10.1039/c0dt00778a
N. Fey, B.M. Ridgway, J. Jover, C.L. McMullin, J.N. Harvey, Dalton Trans 40(2011) 11184-11191.
doi: 10.1039/c1dt10909j
N. Fey, A.G. Orpen, J.N. Harvey, Coord. Chem. Rev. 253(2009) 704-722.
doi: 10.1016/j.ccr.2008.04.017
Y. Boutadla, D.L. Davies, S.A. Macgregor, A.I. Poblador-Bahamonde, Dalton Trans (2009) 5820-5831.
C.J. Cramer, D.G. Truhlar, Acc. Chem. Res. 41(2008) 760-768.
doi: 10.1021/ar800019z
R.F. Ribeiro, A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 115(2011) 14556-14562.
doi: 10.1021/jp205508z
A.D. Becke, J. Chem. Phys. 98(1993) 5648-5652.
doi: 10.1063/1.464913
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37(1988) 785-789.
doi: 10.1103/PhysRevB.37.785
T. Sperger, H.C. Fisher, F. Schoenebeck, WIREs Comput. Mol. Sci. 6(2016) 226-242.
doi: 10.1002/wcms.1244
T. Sperger, I.A. Sanhueza, F. Schoenebeck, Acc. Chem. Res. 49(2016) 1311-1319.
doi: 10.1021/acs.accounts.6b00068
M. Steinmetz, S. Grimme, ChemistryOpen 2(2013) 115-124.
doi: 10.1002/open.201300012
H.L. Woodcock, H.F. Schaefer Ⅲ, P.R. Schreiner, J. Phys. Chem. A 106(2002) 11923-11931.
doi: 10.1021/jp0212895
E.I. Izgorodina, M.L. Coote, L. Radom, J. Phys. Chem. A 109(2005) 7558-7566.
doi: 10.1021/jp052021r
M.D. Wodrich, C. Corminboeuf, P.V.R. Schleyer, Org. Lett. 8(2006) 3631-3634.
doi: 10.1021/ol061016i
P.R. Schreiner, A.A. Fokin, R.A. Pascal, A. de Meijere, Org. Lett. 8(2006) 3635-3638.
doi: 10.1021/ol0610486
M.D. Wodrich, C. Corminboeuf, P.R. Schreiner, A.A. Fokin, P.V.R. Schleyer, Org. Lett. 9(2007) 1851-1854.
doi: 10.1021/ol070354w
S.E. Wheeler, A. Moran, S.N. Pieniazek, K.N. Houk, J. Phys. Chem. A 113(2009) 10376-10384.
doi: 10.1021/jp9058565
S. Grimme, J. Comput. Chem. 27(2006) 1787-1799.
doi: 10.1002/jcc.20495
T. Schwabe, S. Grimme, Acc. Chem. Res. 41(2008) 569-579.
doi: 10.1021/ar700208h
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(2010) 154104.
doi: 10.1063/1.3382344
S. Grimme, WIREs Comput. Mol. Sci. 1(2011) 211-228.
doi: 10.1002/wcms.30
E. Lyngvi, I.A. Sanhueza, F. Schoenebeck, Organometallics 34(2015) 805-812.
doi: 10.1021/om501199t
Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Phys. 123(2005)161103.
doi: 10.1063/1.2126975
Y. Zhao, N.E.Schultz, D.G. Truhlar, J. Chem. TheoryComput. 2(2006) 364-382.
Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120(2008) 215-241.
doi: 10.1007/s00214-007-0310-x
E. Lyngvi, I.A. Sanhueza, A. Schoenebeck, Organometallics 34(2015) 805-812.
doi: 10.1021/om501199t
R. Martin, S.L. Buchwald, Acc. Chem. Res. 41(2008) 1461-1473.
doi: 10.1021/ar800036s
C.A. Tolman, Chem. Rev. 77(1977) 313-348.
doi: 10.1021/cr60307a002
C.A. Tolman, W.C. Seidel, L.W. Gosser, J. Am. Chem. Soc. 96(1974) 53-60.
doi: 10.1021/ja00808a009
C.A. Tolman, J. Am. Chem. Soc. 92(1970) 2953-2956.
doi: 10.1021/ja00713a006
A.C. Hillier, W.J. Sommer, B.S. Yong, et al., Organometallics 22(2003) 4322-4326.
doi: 10.1021/om034016k
A. Poater, B. Cosenza, A. Correa, et al., Eur. J. Inorg. Chem. (2009) 1759-1766.
H. Clavier, S.P. Nolan, Chem. Commun. 46(2010) 841-861.
doi: 10.1039/b922984a
X. Hong, P. Liu, K.N. Houk, J. Am. Chem. Soc. 135(2012) 1456-1462.
X. Wang, F. Meng, Y. Wang, et al., Angew. Chem. Int. Ed. 51(2012) 9276-9282.
doi: 10.1002/anie.201204925
E.W. Werner, T.S. Mei, A.J. Burckle, M.S. Sigman, Science 338(2012) 1455-1458.
doi: 10.1126/science.1229208
A.F. Littke, C. Dai, G.C. Fu, J. Am. Chem. Soc. 122(2000) 4020-4028.
doi: 10.1021/ja0002058
J. Mahatthananchai, J.W. Bode, Acc. Chem. Res. 47(2014) 696-707.
doi: 10.1021/ar400239v
A. Gomez-Suarez, D.J. Nelson, S.P. Nolan, Chem. Commun. 53(2017) 2650-2660.
doi: 10.1039/C7CC00255F
Z.D. Miller, W. Li, T.R. Belderrain, J. Montgomery, J. Am. Chem. Soc. 135(2013) 15282-15285.
doi: 10.1021/ja407749w
E.I. Negishi, A. de Meijere, Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley, New York, 2002.
J.F. Hartwig, Organotransition Metal Chemistry-from Bonding to Catalysis, University Science Books, Sausalito, CA, 2010.
C.C.J. Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 51(2012) 5062-5085.
doi: 10.1002/anie.201107017
M.C. Nielsen, K.J. Bonney, F. Schoenebeck, Angew. Chem. Int. Ed. 53(2014) 5903-5906.
doi: 10.1002/anie.201400837
R.B. Bedford, N.J. Gower, M.F. Haddow, et al., Angew. Chem. Int. Ed. 51(2012) 5435-5438.
doi: 10.1002/anie.201202219
C. Sköld, J. Kleimark, A. Trejos, et al., Chem. Eur. J. 18(2012) 4714-4722.
doi: 10.1002/chem.201102678
J. Jover, N. Fey, M. Purdie, G.C. Lloyd-Jones, J.N. Harvey, J. Mol. Catal. A 324(2010) 39-47.
doi: 10.1016/j.molcata.2010.02.021
Y. Ogiwara, Y. Sakurai, H. Hattori, N. Sakai, Org. Lett. 21(2018) 4204-4208.
T.Y. Xu, F. Sha, H. Alper, J. Am. Chem. Soc. 138(2016) 6629-6635.
doi: 10.1021/jacs.6b03161
Y. Zhu, S.L. Buchwald, J. Am. Chem. Soc. 136(2014) 4500-4503.
doi: 10.1021/ja501560x
Q.Y. Meng, S. Wang, G.S. Huff, B. König, J. Am. Chem. Soc. 140(2018) 3198-3201.
doi: 10.1021/jacs.7b13448
X. Lin, J. Sun, Y. Xi, D. Lin, Organometallics 30(2011) 3284-3292.
doi: 10.1021/om1012049
Q. Lu, H. Yu, Y. Fu, J. Am. Chem. Soc. 136(2014) 8252-8260.
doi: 10.1021/ja4127455
K. Amaike, K. Muto, J. Yamaguchi, K. Itami, J. Am. Chem. Soc. 134(2012) 13573-13576.
doi: 10.1021/ja306062c
K. Muto, J. Yamaguchi, K. Itami, J. Am. Chem. Soc. 134(2012) 169-172.
doi: 10.1021/ja210249h
S.O. Nilsson Lill, P. Ryberg, T. Rein, E. Bennström, P.O. Norrby, Chem. Eur. J. 18(2012) 1640-1649.
doi: 10.1002/chem.201102674
X. Hong, Y. Liang, K.N. Houk, J. Am. Chem. Soc. 136(2014) 2017-2025.
doi: 10.1021/ja4118413
H.J. Xie, Y. Li, L.H. Wang, et al., Dalton Trans. 46(2017) 13010-13019.
doi: 10.1039/C7DT02532G
S.Q. Zhang, B.L.H. Taylor, C.L. Ji, et al., J. Am. Chem. Soc. 139(2017) 12994-13005.
doi: 10.1021/jacs.7b04973
Z. Li, S.L. Zhang, Y. Fu, Q.X. Guo, L. Liu, J. Am. Chem. Soc. 131(2009) 8815-8823.
doi: 10.1021/ja810157e
A. Chatupheeraphat, H.H. Liao, W. Srimontree, et al., J. Am. Chem. Soc. 140(2018) 3724-3735.
doi: 10.1021/jacs.7b12865
H.A. Malik, G.J. Sormunen, J.A. Montgomery, J. Am. Chem. Soc. 132(2010) 6304-6305.
doi: 10.1021/ja102262v
P. Liu, K.N. Houk, Inorg. Chimi. Acta 369(2011) 2-14.
doi: 10.1016/j.ica.2010.12.042
P.R. McCarren, P. Liu, P.H.Y. Cheong, T.F. Jamison, K.N. Houk, J. Am. Chem. Soc. 131(2009) 6654-6655.
doi: 10.1021/ja900701g
R.M. Moslin, K. Miller-Moslin, T.F. Jamison, Chem. Commun. (2007) 4441-4449.
P. Liu, J. Montgomery, K.N. Houk, J. Am. Chem. Soc. 133(2011) 6956-6959.
doi: 10.1021/ja202007s
H.B. Wang, G. Lu, G.J. Sormunen, et al., J. Am. Chem. Soc. 139(2017) 9317-9324.
doi: 10.1021/jacs.7b04583
V.H.M. da Silva, A.P.L. Batista, O. Navarro, A.A.C. Braga, J. Comput. Chem. 38(2017) 2371-2377.
doi: 10.1002/jcc.24867
S.B. Xu, J.L. Jiang, L.L. Ding, Y. Fu, Z.H. Gu, Org. Lett. 20(2018) 325-328.
doi: 10.1021/acs.orglett.7b03514
L.J. Liu, G.J. Pei, P. Liu, et al., J. Org. Chem. 83(2018) 2067-2076.
doi: 10.1021/acs.joc.7b03007
C.L. McMullin, N. Fey, J.N. Harvey, Dalton Trans 43(2014) 13545-13556.
doi: 10.1039/C4DT01758G
F. Hartwig, Pure Appl. Chem. 71(1999) 1417-1423.
doi: 10.1351/pac199971081417
B. Pudasaini, B.G. Janesko, Organometallics 31(2012) 4610-4618.
doi: 10.1021/om300455g
N. Rodríguez, C. Ramírez de Arellano, G. Asensio, M. Medio-Simo'n, Chem. Eur. J. 13(2007) 4223-4229.
doi: 10.1002/chem.200601488
C. Gourlaouen, G. Ujaque, A. Lledo's, et al., J. Org. Chem. 74(2009) 4049-4054.
doi: 10.1021/jo900178c
C. Mollar, M. Besora, F. Maseras, G. Asensio, M. Medio-Simo'n, Chem. Eur. J. 16(2010) 13390-13397.
doi: 10.1002/chem.201001113
A.F. Littke, C. Dai, G.C. Fu, J. Am. Chem. Soc. 122(2000) 4020-4028.
doi: 10.1021/ja0002058
F. Proutiere, F. Schoenebeck, Angew. Chem. Int. Ed. 50(2011) 8192-8195.
doi: 10.1002/anie.201101746
F. Proutiere, E. Lyngvi, M. Aufiero, I.A. Sanhueza, F. Schoenebeck, Organometallics 33(2014) 6879-6884.
doi: 10.1021/om5009605
F. Schoenebeck, K.N. Houk, J. Am. Chem. Soc. 132(2010) 2496-2497.
doi: 10.1021/ja9077528
R. Giri, B.F. Shi, K.M. Engle, N. Maugel, J.Q. Yu, Chem. Soc. Rev. 38(2009) 3242-3272.
doi: 10.1039/b816707a
M.E. O'Reilly, R. Fu, R.J. Nielsen, et al., J. Am. Chem. Soc. 136(2014) 14118-14126.
T. Higashi, H. Ando, S. Kusumoto, K. Nozaki, J. Am. Chem. Soc. 141(2019) 2247-2250.
doi: 10.1021/jacs.8b13829
T.W. Lyons, M.S. Sanford, Chem. Rev. 110(2010) 1147-1169.
doi: 10.1021/cr900184e
L. Theveau, O. Querolle, G. Dupas, C. Hoarau, Tetrahedron 69(2013) 4375-4380.
doi: 10.1016/j.tet.2013.01.073
Q. Zhang, H.Z. Yu, Y. Fu, Organometallics 32(2013) 4165-4173.
doi: 10.1021/om400370v
R. Meir, S. Kozuch, A. Uhe, S. Shaik, Chem. Eur. J. 17(2011) 7623-7631.
doi: 10.1002/chem.201002724
D.E. Stephens, J. Lakey-Beitia, A.C. Atesin, et al., ACS Catal. 5(2015) 167-175.
doi: 10.1021/cs501813v
S. Rousseaux, M. Davi, J. Sofack-Kreutzer, et al., J. Am. Chem. Soc. 132(2010) 10706-10716.
doi: 10.1021/ja1048847
C.E. Kefalidis, M. Davi, P.M. Holstein, E. Clot, O. Baudoin, J. Org. Chem. 79(2014) 11903-11910.
doi: 10.1021/jo501610x
S.Y. Tang, Q.X. Guo, Y. Fu, Chem. Eur. J. 17(2011) 13866-13876.
doi: 10.1002/chem.201101587
R. Giri, Y. Lan, P. Liu, K.N. Houk, J.Q. Yu, J. Am. Chem. Soc. 134(2012) 14118-14126.
doi: 10.1021/ja304643e
M. Steinmetz, K. Ueda, S. Grimme, et al., Chem. Asian J. 7(2012) 1256-1260.
doi: 10.1002/asia.201101011
D.L. Davies, S.M.A. Donald, S.A. Macgregor, J. Am. Chem. Soc. 127(2005) 13754-13755.
doi: 10.1021/ja052047w
A.D. Ryabov, I.K. Sakodinskaya, A.K. Yatsimirsky, J. Chem, Soc., Dalton Trans. (1985) 2629-2638.
M. Lafrance, S.I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 129(2007) 14570-14571.
doi: 10.1021/ja076588s
S.I. Gorelsky, D. Lapointe, K. Fagnou, J. Am. Chem. Soc. 130(2008) 10848-10849.
doi: 10.1021/ja802533u
D. Lapointe, T. Markiewicz, C.J. Whipp, A. Toderian, K. Fagnou, J. Org. Chem. 76(2011) 749-759.
doi: 10.1021/jo102081a
P. Larini, C.E. Kefalidis, R. Jazzar, et al., Chem. Eur. J. 18(2012) 1932-1944.
doi: 10.1002/chem.201103153
A. Millet, P. Larini, E. Clot, O. Baudoin, Chem. Sci. 4(2013) 2241-2247.
doi: 10.1039/c3sc50428j
G. Chen, W. Gong, Z. Zhuang, et al., Science 353(2016) 1023-1027.
doi: 10.1126/science.aaf4434
S.Y. Tang, Q.X. Guo, Y. Fu, Chem. Eur. J. 17(2011) 13866-13876.
doi: 10.1002/chem.201101587
Y.F. Yang, G.J. Cheng, P. Liu, et al., J. Am. Chem. Soc. 136(2014) 344-355.
doi: 10.1021/ja410485g
M. Anand, R.B. Sunoj, H.F. Schaefer, J. Am. Chem. Soc. 136(2014) 5535-5538.
doi: 10.1021/ja412770h
S. Zhang, L. Shi, Y. Ding, J. Am. Chem. Soc. 133(2011) 20218-20229.
doi: 10.1021/ja205294y
G.J. Cheng, P. Chen, T.Y. Sun, et al., Chem. Eur. J. 21(2015) 11180-11188.
doi: 10.1002/chem.201501123
Y.F. Yang, X. Hong, J.Q. Yu, K.N. Houk, Acc. Chem. Res. 50(2017) 2853-2860.
doi: 10.1021/acs.accounts.7b00440
H.J. Xie, L.J. Zhao, Y. Yang, et al., J. Org. Chem. 79(2014) 4517-4527.
doi: 10.1021/jo500557w
Z.D. Miller, W. Li, T.R. Belderrain, J. Montgomery, J. Am. Chem. Soc. 135(2013) 15282-15285.
doi: 10.1021/ja407749w
Z.D. Miller, R. Dorel, J. Montgomery, Angew. Chem. Int. Ed. 54(2015) 9088-9091.
doi: 10.1002/anie.201503521
H.J. Xie, J. Kuang, L.H. Wang, et al., Organometallics 36(2017) 3371-3381.
doi: 10.1021/acs.organomet.7b00495
M. Burns, S. Essafi, J.R. Bame, et al., Nature 513(2014) 183-188.
doi: 10.1038/nature13711
S. Maeda, K. Ohno, K. Morokuma, Phys. Chem. Chem. Phys. 15(2013) 3683-3701.
doi: 10.1039/c3cp44063j
A.L. Dewyer, A.J. Arguelles, P.M. Zimmerman, WIREs Comput. Mol. Sci. 8(2018) No. e1354.
doi: 10.1002/wcms.1354
C. Butts, E. Filali, G. Lloyd-Jones, et al., J. Am. Chem. Soc. 131(2009) 9945-9957.
doi: 10.1021/ja8099757
P.J. Donoghue, P. Helquist, P.O. Norrby, O. Wiest, J. Chem. Theory Comput. 4(2008) 1313-1323.
doi: 10.1021/ct800132a
P.J. Donoghue, P. Helquist, P.O. Norrby, O. Wiest, J. Am. Chem. Soc. 131(2009) 410-411.
doi: 10.1021/ja806246h
K.C. Harper, M.S. Sigman, Science 333(2011) 1875-1878.
doi: 10.1126/science.1206997
K.C. Harper, E.N. Bess, M.S. Sigman, Nat. Chem. 4(2012) 366-374.
doi: 10.1038/nchem.1297
K.C. Harper, M.S. Sigman, J. Org. Chem. 78(2013) 2813-2818.
doi: 10.1021/jo4002239
K. Wu, A.G. Doyle, Nat. Chem. 9(2017) 779-784.
doi: 10.1038/nchem.2741
Z.L. Niemeyer, A. Milo, D.P. Hickey, M.S. Sigman, Nat. Chem. 8(2018) 610-617.
M.H. Keylor, Z.L. Niemeyer, M.S. Sigman, K.L. Tan, J. Am. Chem. Soc. 139(2017) 10613-10616.
doi: 10.1021/jacs.7b05409
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Yutong Xiong , Ting Meng , Wendi Luo , Bin Tu , Shuai Wang , Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511
Junyi Yu , Yin Cheng , Anhong Cai , Xianfeng Huang , Qingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Ying Wang , Hong Yang , Caixia Zhu , Qing Hong , Xuwen Cao , Kaiyuan Wang , Yuan Xu , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Shaoming Dong , Yiming Niu , Yinghui Pu , Yongzhao Wang , Bingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901