Citation: Mengna Cao, Hujun Xie. Recent advances in theoretical studies on ligand-controlled selectivity of nickel- and palladium-catalyzed cross-coupling reactions[J]. Chinese Chemical Letters, ;2021, 32(1): 319-327. doi: 10.1016/j.cclet.2020.04.005 shu

Recent advances in theoretical studies on ligand-controlled selectivity of nickel- and palladium-catalyzed cross-coupling reactions


  • Author Bio:
    Prof. Hujun Xie received his Bachelor's degree (2004) form Zhejiang University, and obtained Ph.D. degree from Xiamen University under the supervision of Prof. Zexing Cao. From 2010 to 2014, as a post doctor, he studied at the Hong Kong University of Science and Technology under the supervision of Prof. Zhenyang Lin and Zhejiang University under the supervision of Prof. Wenjun Fang. From 2017 to 2018, as a visiting scholar, he studied at the Fudan University under the supervision of Prof. Xin Xu. He joined Zhejiang Gongshang University in 2009, and became a full professor (2018) in the Department of Applied Chemistry. He is a top talent of West Lake Scholars in Zhejiang Gongshang University. His research focuses on the DFT calculations for homogeneous catalysis, especially in the field of nickel- and palladium-catalyzed cross-coupling reactions.
  • * Corresponding author.
    E-mail address: hujunxie@gmail.com (H. Xie).
  • Received Date: 2 March 2020
    Revised Date: 27 March 2020
    Accepted Date: 3 April 2020
    Available Online: 15 April 2020

Figures(19)

  • Nickel- and palladium-catalyzed cross-coupling reactions have attracted wide attentions, while ligandcontrolled selectivity in these reactions are still elusive, and calculations can help obtain possible catalytic cycles to generate different products and provide insights into key factors of selectivity, which facilitates the development of new catalyst systems to control reaction selectivity. This review covers our efforts and some significant achievements from other groups on ligand-controlled reaction selectivity of coupling reactions, including introduction, computational methods, selectivity control by ligands in Ni- and Pd-catalyzed coupling reactions, as well as summary and future perspectives.
  • 加载中
    1. [1]

      T. Sperger, I.A. Sanhueza, I. Kalvet, F. Schoenebeck, Chem. Rev. 115(2015) 9532-9586.  doi: 10.1021/acs.chemrev.5b00163

    2. [2]

      S. Sakaki, Y.Y. Ohnishi, H. Sato, Chem. Rec. 10(2010) 29-45.  doi: 10.1002/tcr.200900019

    3. [3]

      M. García-Melchor, X. Solans-Monfort, G. Ujaque, C-C bond formation, in: J.R. Poeppelmeier (Ed. ), Comprehensive Inorganic Chemistry Ⅱ, Vol. 9, Elsevier, Amsterdam, 2013, pp. 767-805.

    4. [4]

      T. Fan, Z. Lin, Theoretical insights into transition metal-catalyzed reactions of carbon dioxide. Understanding organometallic reaction mechanisms and catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, pp. 121-144.

    5. [5]

      M. García-Melchor, A.A.C. Braga, A. Lledo's, G. Ujaque, F. Maseras, Acc. Chem. Res. 46(2013) 2626-2634.  doi: 10.1021/ar400080r

    6. [6]

      K.J. Bonney, F. Schoenebeck, Chem. Soc. Rev. 43(2014) 6609-6638.  doi: 10.1039/C4CS00061G

    7. [7]

      D. Balcells, E. Clot, O. Eisenstein, Chem. Rev. 110(2010) 749-823.  doi: 10.1021/cr900315k

    8. [8]

      W.M.C. Sameera, F. Maseras, WIREs Comput. Mol. Sci. 2(2012) 375-385.  doi: 10.1002/wcms.1092

    9. [9]

      Y.Y. Jiang, Z. Li, J. Shi, Organometallics 31(2012) 4356-4366.  doi: 10.1021/om300329z

    10. [10]

      D.G. Musaev, T.M. Figg, A.L. Kaledin, Chem. Soc. Rev. 43(2014) 5009-5031.  doi: 10.1039/C3CS60447K

    11. [11]

      D. Balcells, O. Eisenstein, Theoretical studies on the reaction mechanism of metal-assisted C-H activation, in: J.R. Poeppelmeier (Ed. ), Comprehensive Inorganic Chemistry Ⅱ, Vol. 9, Elsevier, Amsterdam, 2013, pp. 695-726.

    12. [12]

      S.I. Gorelsky, Coord. Chem. Rev. 257(2013) 153-164.  doi: 10.1016/j.ccr.2012.06.016

    13. [13]

      L. Xue, Z. Lin, Chem. Soc. Rev. 39(2010) 1692-1705.  doi: 10.1039/B814973A

    14. [14]

      H.J. Xie, T. Fan, Q.F. Lei, W.J. Fang, Sci. China Chem. 59(2016) 1432-1447.  doi: 10.1007/s11426-016-0018-2

    15. [15]

      F. Schoenebeck, Ligand, additive, and solvent effects in palladium catalysis-mechanistic studies en route to catalyst design. Understanding organometallic reaction mechanisms and catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014, pp. 69-92.

    16. [16]

      P. Liu, K.N. Houk, Inorg. Chim. Acta 369(2011) 2-14.  doi: 10.1016/j.ica.2010.12.042

    17. [17]

      H.J. Xie, Q. Sun, G.R. Ren, Z.X. Cao, J. Org. Chem. 79(2014) 11911-11921.  doi: 10.1021/jo501618k

    18. [18]

      A.A.C. Braga, G. Ujaque, F. Maseras, Computational modeling for homogeneous and enzymatic catalysis, in: K. Morokuma, D.G. Musaev (Eds. ), A Knowledge-base for Designing Efficient Catalysis, WILEY-VCH GmbH & Co., KGaA, Weinheim, 2008, pp. 109-130.

    19. [19]

      G.B. Smith, G.C. Dezeny, D.L. Hughes, A.O. King, T.R. Verhoeven, J. Org. Chem. 59(1994) 8151-8156.  doi: 10.1021/jo00105a036

    20. [20]

      U. Christmann, R. Vilar, Angew. Chem. Int. Ed. 44(2005) 366-374.  doi: 10.1002/anie.200461189

    21. [21]

      M. Besora, C. Gourlaouen, B. Yates, F. Maseras, Dalton Trans 40(2011) 11089-11094.  doi: 10.1039/c1dt10983a

    22. [22]

      H.M. Senn, T. Ziegler, Organometallics 23(2004) 2980-2988.  doi: 10.1021/om049963n

    23. [23]

      E. Lyngvi, F. Schoenebeck, Tetrahedron 69(2013) 5715-5718.  doi: 10.1016/j.tet.2013.03.095

    24. [24]

      S. Kozuch, C. Amatore, A. Jutand, S. Shaik, Organometallics 24(2005) 2319-2330.  doi: 10.1021/om050160p

    25. [25]

      L.J. Goossen, D. Koley, H.L. Hermann, W. Thiel, Organometallics 24(2005) 2398-2410.  doi: 10.1021/om0500220

    26. [26]

      J.N. Harvey, F. Himo, F. Maseras, L. Perrin, ACS Catal 9(2019) 6803-6813.  doi: 10.1021/acscatal.9b01537

    27. [27]

      N. Fey, M.F. Haddow, J.N. Harvey, C.L. McMullin, A.G.A. Orpen, Dalton Trans (2009) 8183-8196.

    28. [28]

      J. Jover, N. Fey, J.N. Harvey, et al., Organometallics 29(2010) 6245-6258.  doi: 10.1021/om100648v

    29. [29]

      J. Jover, N. Fey, J.N. Harvey, et al., Organometallics 31(2012) 5302-5306.  doi: 10.1021/om300312t

    30. [30]

      Y.T. Zhang, M.N. Cao, G.Q. Ge, et al., Sci. Sin. Chim. 49(2019) 380-390.

    31. [31]

      H.J. Xie, F.R. Lin, Q.F. Lei, W.J. Fang, Organometallics 32(2013) 6957-6968.  doi: 10.1021/om400503x

    32. [32]

      H.J. Xie, H. Zhang, Z.Y. Lin, Organometallics 32(2013) 2336-2343.  doi: 10.1021/om301215a

    33. [33]

      H.J. Xie, H. Zhang, Z.Y. Lin, New J. Chem. 37(2013) 2856-2861.  doi: 10.1039/c3nj00531c

    34. [34]

      H.J. Xie, F.R. Lin, L. Yang, et al., J. Organomet. Chem. 745-746(2013) 417-422.  doi: 10.1016/j.jorganchem.2013.08.015

    35. [35]

      H.J. Xie, F.R. Lin, Q.F. Lei, W.J. Fang, J. Phys. Org. Chem. 26(2013) 933-938.  doi: 10.1002/poc.3192

    36. [36]

      N. Fey, A.G. Orpen, J.N. Harvey, Coord. Chem. Rev. 253(2009) 704-722.  doi: 10.1016/j.ccr.2008.04.017

    37. [37]

      C.L. McMullin, J. Jover, J.N. Harvey, N. Fey, Dalton Trans 39(2010) 10833-10836.  doi: 10.1039/c0dt00778a

    38. [38]

      N. Fey, B.M. Ridgway, J. Jover, C.L. McMullin, J.N. Harvey, Dalton Trans 40(2011) 11184-11191.  doi: 10.1039/c1dt10909j

    39. [39]

      N. Fey, A.G. Orpen, J.N. Harvey, Coord. Chem. Rev. 253(2009) 704-722.  doi: 10.1016/j.ccr.2008.04.017

    40. [40]

      Y. Boutadla, D.L. Davies, S.A. Macgregor, A.I. Poblador-Bahamonde, Dalton Trans (2009) 5820-5831.

    41. [41]

      C.J. Cramer, D.G. Truhlar, Acc. Chem. Res. 41(2008) 760-768.  doi: 10.1021/ar800019z

    42. [42]

      R.F. Ribeiro, A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 115(2011) 14556-14562.  doi: 10.1021/jp205508z

    43. [43]

      A.D. Becke, J. Chem. Phys. 98(1993) 5648-5652.  doi: 10.1063/1.464913

    44. [44]

      C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37(1988) 785-789.  doi: 10.1103/PhysRevB.37.785

    45. [45]

      T. Sperger, H.C. Fisher, F. Schoenebeck, WIREs Comput. Mol. Sci. 6(2016) 226-242.  doi: 10.1002/wcms.1244

    46. [46]

      T. Sperger, I.A. Sanhueza, F. Schoenebeck, Acc. Chem. Res. 49(2016) 1311-1319.  doi: 10.1021/acs.accounts.6b00068

    47. [47]

      M. Steinmetz, S. Grimme, ChemistryOpen 2(2013) 115-124.  doi: 10.1002/open.201300012

    48. [48]

      H.L. Woodcock, H.F. Schaefer Ⅲ, P.R. Schreiner, J. Phys. Chem. A 106(2002) 11923-11931.  doi: 10.1021/jp0212895

    49. [49]

      E.I. Izgorodina, M.L. Coote, L. Radom, J. Phys. Chem. A 109(2005) 7558-7566.  doi: 10.1021/jp052021r

    50. [50]

      M.D. Wodrich, C. Corminboeuf, P.V.R. Schleyer, Org. Lett. 8(2006) 3631-3634.  doi: 10.1021/ol061016i

    51. [51]

      P.R. Schreiner, A.A. Fokin, R.A. Pascal, A. de Meijere, Org. Lett. 8(2006) 3635-3638.  doi: 10.1021/ol0610486

    52. [52]

      M.D. Wodrich, C. Corminboeuf, P.R. Schreiner, A.A. Fokin, P.V.R. Schleyer, Org. Lett. 9(2007) 1851-1854.  doi: 10.1021/ol070354w

    53. [53]

      S.E. Wheeler, A. Moran, S.N. Pieniazek, K.N. Houk, J. Phys. Chem. A 113(2009) 10376-10384.  doi: 10.1021/jp9058565

    54. [54]

      S. Grimme, J. Comput. Chem. 27(2006) 1787-1799.  doi: 10.1002/jcc.20495

    55. [55]

      T. Schwabe, S. Grimme, Acc. Chem. Res. 41(2008) 569-579.  doi: 10.1021/ar700208h

    56. [56]

      S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(2010) 154104.  doi: 10.1063/1.3382344

    57. [57]

      S. Grimme, WIREs Comput. Mol. Sci. 1(2011) 211-228.  doi: 10.1002/wcms.30

    58. [58]

      E. Lyngvi, I.A. Sanhueza, F. Schoenebeck, Organometallics 34(2015) 805-812.  doi: 10.1021/om501199t

    59. [59]

      Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Phys. 123(2005)161103.  doi: 10.1063/1.2126975

    60. [60]

      Y. Zhao, N.E.Schultz, D.G. Truhlar, J. Chem. TheoryComput. 2(2006) 364-382.

    61. [61]

      Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120(2008) 215-241.  doi: 10.1007/s00214-007-0310-x

    62. [62]

      E. Lyngvi, I.A. Sanhueza, A. Schoenebeck, Organometallics 34(2015) 805-812.  doi: 10.1021/om501199t

    63. [63]

      R. Martin, S.L. Buchwald, Acc. Chem. Res. 41(2008) 1461-1473.  doi: 10.1021/ar800036s

    64. [64]

      C.A. Tolman, Chem. Rev. 77(1977) 313-348.  doi: 10.1021/cr60307a002

    65. [65]

      C.A. Tolman, W.C. Seidel, L.W. Gosser, J. Am. Chem. Soc. 96(1974) 53-60.  doi: 10.1021/ja00808a009

    66. [66]

      C.A. Tolman, J. Am. Chem. Soc. 92(1970) 2953-2956.  doi: 10.1021/ja00713a006

    67. [67]

      A.C. Hillier, W.J. Sommer, B.S. Yong, et al., Organometallics 22(2003) 4322-4326.  doi: 10.1021/om034016k

    68. [68]

      A. Poater, B. Cosenza, A. Correa, et al., Eur. J. Inorg. Chem. (2009) 1759-1766.

    69. [69]

      H. Clavier, S.P. Nolan, Chem. Commun. 46(2010) 841-861.  doi: 10.1039/b922984a

    70. [70]

      X. Hong, P. Liu, K.N. Houk, J. Am. Chem. Soc. 135(2012) 1456-1462.

    71. [71]

      X. Wang, F. Meng, Y. Wang, et al., Angew. Chem. Int. Ed. 51(2012) 9276-9282.  doi: 10.1002/anie.201204925

    72. [72]

      E.W. Werner, T.S. Mei, A.J. Burckle, M.S. Sigman, Science 338(2012) 1455-1458.  doi: 10.1126/science.1229208

    73. [73]

      A.F. Littke, C. Dai, G.C. Fu, J. Am. Chem. Soc. 122(2000) 4020-4028.  doi: 10.1021/ja0002058

    74. [74]

      J. Mahatthananchai, J.W. Bode, Acc. Chem. Res. 47(2014) 696-707.  doi: 10.1021/ar400239v

    75. [75]

      A. Gomez-Suarez, D.J. Nelson, S.P. Nolan, Chem. Commun. 53(2017) 2650-2660.  doi: 10.1039/C7CC00255F

    76. [76]

      Z.D. Miller, W. Li, T.R. Belderrain, J. Montgomery, J. Am. Chem. Soc. 135(2013) 15282-15285.  doi: 10.1021/ja407749w

    77. [77]

      E.I. Negishi, A. de Meijere, Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley, New York, 2002.

    78. [78]

      J.F. Hartwig, Organotransition Metal Chemistry-from Bonding to Catalysis, University Science Books, Sausalito, CA, 2010.

    79. [79]

      C.C.J. Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 51(2012) 5062-5085.  doi: 10.1002/anie.201107017

    80. [80]

      M.C. Nielsen, K.J. Bonney, F. Schoenebeck, Angew. Chem. Int. Ed. 53(2014) 5903-5906.  doi: 10.1002/anie.201400837

    81. [81]

      R.B. Bedford, N.J. Gower, M.F. Haddow, et al., Angew. Chem. Int. Ed. 51(2012) 5435-5438.  doi: 10.1002/anie.201202219

    82. [82]

      C. Sköld, J. Kleimark, A. Trejos, et al., Chem. Eur. J. 18(2012) 4714-4722.  doi: 10.1002/chem.201102678

    83. [83]

      J. Jover, N. Fey, M. Purdie, G.C. Lloyd-Jones, J.N. Harvey, J. Mol. Catal. A 324(2010) 39-47.  doi: 10.1016/j.molcata.2010.02.021

    84. [84]

      Y. Ogiwara, Y. Sakurai, H. Hattori, N. Sakai, Org. Lett. 21(2018) 4204-4208.

    85. [85]

      T.Y. Xu, F. Sha, H. Alper, J. Am. Chem. Soc. 138(2016) 6629-6635.  doi: 10.1021/jacs.6b03161

    86. [86]

      Y. Zhu, S.L. Buchwald, J. Am. Chem. Soc. 136(2014) 4500-4503.  doi: 10.1021/ja501560x

    87. [87]

      Q.Y. Meng, S. Wang, G.S. Huff, B. König, J. Am. Chem. Soc. 140(2018) 3198-3201.  doi: 10.1021/jacs.7b13448

    88. [88]

      X. Lin, J. Sun, Y. Xi, D. Lin, Organometallics 30(2011) 3284-3292.  doi: 10.1021/om1012049

    89. [89]

      Q. Lu, H. Yu, Y. Fu, J. Am. Chem. Soc. 136(2014) 8252-8260.  doi: 10.1021/ja4127455

    90. [90]

      K. Amaike, K. Muto, J. Yamaguchi, K. Itami, J. Am. Chem. Soc. 134(2012) 13573-13576.  doi: 10.1021/ja306062c

    91. [91]

      K. Muto, J. Yamaguchi, K. Itami, J. Am. Chem. Soc. 134(2012) 169-172.  doi: 10.1021/ja210249h

    92. [92]

      S.O. Nilsson Lill, P. Ryberg, T. Rein, E. Bennström, P.O. Norrby, Chem. Eur. J. 18(2012) 1640-1649.  doi: 10.1002/chem.201102674

    93. [93]

      X. Hong, Y. Liang, K.N. Houk, J. Am. Chem. Soc. 136(2014) 2017-2025.  doi: 10.1021/ja4118413

    94. [94]

      H.J. Xie, Y. Li, L.H. Wang, et al., Dalton Trans. 46(2017) 13010-13019.  doi: 10.1039/C7DT02532G

    95. [95]

      S.Q. Zhang, B.L.H. Taylor, C.L. Ji, et al., J. Am. Chem. Soc. 139(2017) 12994-13005.  doi: 10.1021/jacs.7b04973

    96. [96]

      Z. Li, S.L. Zhang, Y. Fu, Q.X. Guo, L. Liu, J. Am. Chem. Soc. 131(2009) 8815-8823.  doi: 10.1021/ja810157e

    97. [97]

      A. Chatupheeraphat, H.H. Liao, W. Srimontree, et al., J. Am. Chem. Soc. 140(2018) 3724-3735.  doi: 10.1021/jacs.7b12865

    98. [98]

      H.A. Malik, G.J. Sormunen, J.A. Montgomery, J. Am. Chem. Soc. 132(2010) 6304-6305.  doi: 10.1021/ja102262v

    99. [99]

      P. Liu, K.N. Houk, Inorg. Chimi. Acta 369(2011) 2-14.  doi: 10.1016/j.ica.2010.12.042

    100. [100]

      P.R. McCarren, P. Liu, P.H.Y. Cheong, T.F. Jamison, K.N. Houk, J. Am. Chem. Soc. 131(2009) 6654-6655.  doi: 10.1021/ja900701g

    101. [101]

      R.M. Moslin, K. Miller-Moslin, T.F. Jamison, Chem. Commun. (2007) 4441-4449.

    102. [102]

      P. Liu, J. Montgomery, K.N. Houk, J. Am. Chem. Soc. 133(2011) 6956-6959.  doi: 10.1021/ja202007s

    103. [103]

      H.B. Wang, G. Lu, G.J. Sormunen, et al., J. Am. Chem. Soc. 139(2017) 9317-9324.  doi: 10.1021/jacs.7b04583

    104. [104]

      V.H.M. da Silva, A.P.L. Batista, O. Navarro, A.A.C. Braga, J. Comput. Chem. 38(2017) 2371-2377.  doi: 10.1002/jcc.24867

    105. [105]

      S.B. Xu, J.L. Jiang, L.L. Ding, Y. Fu, Z.H. Gu, Org. Lett. 20(2018) 325-328.  doi: 10.1021/acs.orglett.7b03514

    106. [106]

      L.J. Liu, G.J. Pei, P. Liu, et al., J. Org. Chem. 83(2018) 2067-2076.  doi: 10.1021/acs.joc.7b03007

    107. [107]

      C.L. McMullin, N. Fey, J.N. Harvey, Dalton Trans 43(2014) 13545-13556.  doi: 10.1039/C4DT01758G

    108. [108]

      F. Hartwig, Pure Appl. Chem. 71(1999) 1417-1423.  doi: 10.1351/pac199971081417

    109. [109]

      B. Pudasaini, B.G. Janesko, Organometallics 31(2012) 4610-4618.  doi: 10.1021/om300455g

    110. [110]

      N. Rodríguez, C. Ramírez de Arellano, G. Asensio, M. Medio-Simo'n, Chem. Eur. J. 13(2007) 4223-4229.  doi: 10.1002/chem.200601488

    111. [111]

      C. Gourlaouen, G. Ujaque, A. Lledo's, et al., J. Org. Chem. 74(2009) 4049-4054.  doi: 10.1021/jo900178c

    112. [112]

      C. Mollar, M. Besora, F. Maseras, G. Asensio, M. Medio-Simo'n, Chem. Eur. J. 16(2010) 13390-13397.  doi: 10.1002/chem.201001113

    113. [113]

      A.F. Littke, C. Dai, G.C. Fu, J. Am. Chem. Soc. 122(2000) 4020-4028.  doi: 10.1021/ja0002058

    114. [114]

      F. Proutiere, F. Schoenebeck, Angew. Chem. Int. Ed. 50(2011) 8192-8195.  doi: 10.1002/anie.201101746

    115. [115]

      F. Proutiere, E. Lyngvi, M. Aufiero, I.A. Sanhueza, F. Schoenebeck, Organometallics 33(2014) 6879-6884.  doi: 10.1021/om5009605

    116. [116]

      F. Schoenebeck, K.N. Houk, J. Am. Chem. Soc. 132(2010) 2496-2497.  doi: 10.1021/ja9077528

    117. [117]

      R. Giri, B.F. Shi, K.M. Engle, N. Maugel, J.Q. Yu, Chem. Soc. Rev. 38(2009) 3242-3272.  doi: 10.1039/b816707a

    118. [118]

      M.E. O'Reilly, R. Fu, R.J. Nielsen, et al., J. Am. Chem. Soc. 136(2014) 14118-14126.

    119. [119]

      T. Higashi, H. Ando, S. Kusumoto, K. Nozaki, J. Am. Chem. Soc. 141(2019) 2247-2250.  doi: 10.1021/jacs.8b13829

    120. [120]

      T.W. Lyons, M.S. Sanford, Chem. Rev. 110(2010) 1147-1169.  doi: 10.1021/cr900184e

    121. [121]

      L. Theveau, O. Querolle, G. Dupas, C. Hoarau, Tetrahedron 69(2013) 4375-4380.  doi: 10.1016/j.tet.2013.01.073

    122. [122]

      Q. Zhang, H.Z. Yu, Y. Fu, Organometallics 32(2013) 4165-4173.  doi: 10.1021/om400370v

    123. [123]

      R. Meir, S. Kozuch, A. Uhe, S. Shaik, Chem. Eur. J. 17(2011) 7623-7631.  doi: 10.1002/chem.201002724

    124. [124]

      D.E. Stephens, J. Lakey-Beitia, A.C. Atesin, et al., ACS Catal. 5(2015) 167-175.  doi: 10.1021/cs501813v

    125. [125]

      S. Rousseaux, M. Davi, J. Sofack-Kreutzer, et al., J. Am. Chem. Soc. 132(2010) 10706-10716.  doi: 10.1021/ja1048847

    126. [126]

      C.E. Kefalidis, M. Davi, P.M. Holstein, E. Clot, O. Baudoin, J. Org. Chem. 79(2014) 11903-11910.  doi: 10.1021/jo501610x

    127. [127]

      S.Y. Tang, Q.X. Guo, Y. Fu, Chem. Eur. J. 17(2011) 13866-13876.  doi: 10.1002/chem.201101587

    128. [128]

      R. Giri, Y. Lan, P. Liu, K.N. Houk, J.Q. Yu, J. Am. Chem. Soc. 134(2012) 14118-14126.  doi: 10.1021/ja304643e

    129. [129]

      M. Steinmetz, K. Ueda, S. Grimme, et al., Chem. Asian J. 7(2012) 1256-1260.  doi: 10.1002/asia.201101011

    130. [130]

      D.L. Davies, S.M.A. Donald, S.A. Macgregor, J. Am. Chem. Soc. 127(2005) 13754-13755.  doi: 10.1021/ja052047w

    131. [131]

      A.D. Ryabov, I.K. Sakodinskaya, A.K. Yatsimirsky, J. Chem, Soc., Dalton Trans. (1985) 2629-2638.

    132. [132]

      M. Lafrance, S.I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 129(2007) 14570-14571.  doi: 10.1021/ja076588s

    133. [133]

      S.I. Gorelsky, D. Lapointe, K. Fagnou, J. Am. Chem. Soc. 130(2008) 10848-10849.  doi: 10.1021/ja802533u

    134. [134]

      D. Lapointe, T. Markiewicz, C.J. Whipp, A. Toderian, K. Fagnou, J. Org. Chem. 76(2011) 749-759.  doi: 10.1021/jo102081a

    135. [135]

      P. Larini, C.E. Kefalidis, R. Jazzar, et al., Chem. Eur. J. 18(2012) 1932-1944.  doi: 10.1002/chem.201103153

    136. [136]

      A. Millet, P. Larini, E. Clot, O. Baudoin, Chem. Sci. 4(2013) 2241-2247.  doi: 10.1039/c3sc50428j

    137. [137]

      G. Chen, W. Gong, Z. Zhuang, et al., Science 353(2016) 1023-1027.  doi: 10.1126/science.aaf4434

    138. [138]

      S.Y. Tang, Q.X. Guo, Y. Fu, Chem. Eur. J. 17(2011) 13866-13876.  doi: 10.1002/chem.201101587

    139. [139]

      Y.F. Yang, G.J. Cheng, P. Liu, et al., J. Am. Chem. Soc. 136(2014) 344-355.  doi: 10.1021/ja410485g

    140. [140]

      M. Anand, R.B. Sunoj, H.F. Schaefer, J. Am. Chem. Soc. 136(2014) 5535-5538.  doi: 10.1021/ja412770h

    141. [141]

      S. Zhang, L. Shi, Y. Ding, J. Am. Chem. Soc. 133(2011) 20218-20229.  doi: 10.1021/ja205294y

    142. [142]

      G.J. Cheng, P. Chen, T.Y. Sun, et al., Chem. Eur. J. 21(2015) 11180-11188.  doi: 10.1002/chem.201501123

    143. [143]

      Y.F. Yang, X. Hong, J.Q. Yu, K.N. Houk, Acc. Chem. Res. 50(2017) 2853-2860.  doi: 10.1021/acs.accounts.7b00440

    144. [144]

      H.J. Xie, L.J. Zhao, Y. Yang, et al., J. Org. Chem. 79(2014) 4517-4527.  doi: 10.1021/jo500557w

    145. [145]

      Z.D. Miller, W. Li, T.R. Belderrain, J. Montgomery, J. Am. Chem. Soc. 135(2013) 15282-15285.  doi: 10.1021/ja407749w

    146. [146]

      Z.D. Miller, R. Dorel, J. Montgomery, Angew. Chem. Int. Ed. 54(2015) 9088-9091.  doi: 10.1002/anie.201503521

    147. [147]

      H.J. Xie, J. Kuang, L.H. Wang, et al., Organometallics 36(2017) 3371-3381.  doi: 10.1021/acs.organomet.7b00495

    148. [148]

      M. Burns, S. Essafi, J.R. Bame, et al., Nature 513(2014) 183-188.  doi: 10.1038/nature13711

    149. [149]

      S. Maeda, K. Ohno, K. Morokuma, Phys. Chem. Chem. Phys. 15(2013) 3683-3701.  doi: 10.1039/c3cp44063j

    150. [150]

      A.L. Dewyer, A.J. Arguelles, P.M. Zimmerman, WIREs Comput. Mol. Sci. 8(2018) No. e1354.  doi: 10.1002/wcms.1354

    151. [151]

      C. Butts, E. Filali, G. Lloyd-Jones, et al., J. Am. Chem. Soc. 131(2009) 9945-9957.  doi: 10.1021/ja8099757

    152. [152]

      P.J. Donoghue, P. Helquist, P.O. Norrby, O. Wiest, J. Chem. Theory Comput. 4(2008) 1313-1323.  doi: 10.1021/ct800132a

    153. [153]

      P.J. Donoghue, P. Helquist, P.O. Norrby, O. Wiest, J. Am. Chem. Soc. 131(2009) 410-411.  doi: 10.1021/ja806246h

    154. [154]

      K.C. Harper, M.S. Sigman, Science 333(2011) 1875-1878.  doi: 10.1126/science.1206997

    155. [155]

      K.C. Harper, E.N. Bess, M.S. Sigman, Nat. Chem. 4(2012) 366-374.  doi: 10.1038/nchem.1297

    156. [156]

      K.C. Harper, M.S. Sigman, J. Org. Chem. 78(2013) 2813-2818.  doi: 10.1021/jo4002239

    157. [157]

      K. Wu, A.G. Doyle, Nat. Chem. 9(2017) 779-784.  doi: 10.1038/nchem.2741

    158. [158]

      Z.L. Niemeyer, A. Milo, D.P. Hickey, M.S. Sigman, Nat. Chem. 8(2018) 610-617.

    159. [159]

      M.H. Keylor, Z.L. Niemeyer, M.S. Sigman, K.L. Tan, J. Am. Chem. Soc. 139(2017) 10613-10616.  doi: 10.1021/jacs.7b05409

  • 加载中
    1. [1]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    2. [2]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    3. [3]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    4. [4]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    5. [5]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    6. [6]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    7. [7]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    8. [8]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    9. [9]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    10. [10]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    11. [11]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    12. [12]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    13. [13]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    14. [14]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    15. [15]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    16. [16]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    17. [17]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    18. [18]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    19. [19]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    20. [20]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

Metrics
  • PDF Downloads(11)
  • Abstract views(1707)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return