Citation: Yuan Zhang, Han Luo, Qixing Lu, Qiaoyu An, You Li, Shanshan Li, Zongyuan Tang, Baosheng Li. Access to pyridines via cascade nucleophilic addition reaction of 1,2,3-triazines with activated ketones or acetonitriles[J]. Chinese Chemical Letters, ;2021, 32(1): 393-396. doi: 10.1016/j.cclet.2020.03.075 shu

Access to pyridines via cascade nucleophilic addition reaction of 1,2,3-triazines with activated ketones or acetonitriles

    * Corresponding author.
    E-mail address: libs@cqu.edu.cn (B. Li).
    1 These authors contributed equally to this work.
  • Received Date: 26 February 2020
    Revised Date: 25 March 2020
    Accepted Date: 30 March 2020
    Available Online: 14 May 2020

Figures(5)

  • We studied the cascade nucleophilic addition reactions of 1,2,3-triazines with activated acetonitriles or ketones, which were used to construct highly substituted pyridines that are not easily accessed by conventional methods. The strategy addressed some structural diversity issues currently facing medicinal chemistry, and the resulting pyridines could be used as convenient precursors for the synthesis of related pharmaceuticals. In particular, our method was applied to the syntheses of the marketed drug etoricoxib and several biologically important molecules in a few steps.
  • 加载中
    1. [1]

      (a) D. O'Hagan, Nat. Prod. Rep. 17 (2000) 435-446;
      (b) G.D. Henry, Tetrahedron 60 (2004) 6043-6061;
      (c) I. Nakamura, Y. Yamamoto, Chem. Rev. 104 (2004) 2127-2198;
      (d) M.H. Cao, N.J. Green, S.Z. Xu, Org. Biomol. Chem. 15 (2017) 3105-3129;
      (e) L. Li, Z. Chen, X. Zhang, Y. Jia, Chem. Rev. 118 (2018) 3752-3832.

    2. [2]

      (a) W. Du, Tetrahedron 59 (2003) 8649-8687;
      (b) K.V. Sashidhara, R.K. Modukuri, D. Choudhary, et al., Eur. J. Med. Chem. 70 (2013) 802-810;
      (c) E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257-10274;
      (d) D. Verga, C.H. NâGuyen, M. Dakir, et al., J. Med. Chem. 61 (2018) 10502-10518.

    3. [3]

      C.E. Müller, P.R. Schreiner, Angew. Chem. Int. Ed. 50 (2011) 6012-6042.
       

    4. [4]

      (a) C. Kaes, A. Katz, M.W. Hosseini, Chem. Rev. 100 (2000) 3553-3590;
      (b) G. Chelucci, R. Thummel, Chem. Rev. 102 (2002) 3129-3170.

    5. [5]

      J.A. Bull, J.J. Mousseau, G. Pelletier, A.B. Charette, Chem. Rev. 112 (2012) 2642-2713.
       

    6. [6]

      (a) Z. Shi, T.P. Loh, Angew. Chem. Int. Ed. 52 (2013) 8584-8587;
      (b) J. Chen, Q. Song, C. Wang, Z. Xi, J. Am. Chem. Soc. 124 (2002) 6238-6239;
      (c) J.A. Varela, C. Saá, Chem. Rev. 103 (2003) 3787-3802;
      (d) G. Domínguez, J. Pérez-Castells, Chem. Soc. Rev. 40 (2011) 3430-3444;
      (e) N.S.Y. Loy, A. Singh, X. Xu, C.M. Park, Angew. Chem. Int. Ed. 52 (2013) 2212-2216;
      (f) A. Prechter, G. Henrion, P.F. dit Bel, F. Gagosz, Angew. Chem. Int. Ed. 53 (2014) 4959-4959.

    7. [7]

      (a) A. Ohsawa, T. Kaihoh, H. Igeta, Chem. Commun. (1985) 1370-1371;
      (b) T. Kaihoh, T. Itoh, A. Ohsawa, et al., Chem. Phar. Bull. 35 (1987) 3952-3954;
      (c) T. Itoh, K. Nagata, T. Kaihoh, et al., Heterocycles 33 (1992) 631-639;
      (d) E.D. Anderson, A.S. Duerfeldt, K. Zhu, C.M. Glinkerman, D.L. Boger, Org. Lett. 16 (2014) 5084-5087;
      (e) C.M. Glinkerman, D.L. Boger, Org. Lett. 17 (2015) 4002-4005;
      (f) E.D. Anderson, D.L. Boger, Org. Lett. 13 (2011) 2492-2494;
      (g) E.D. Anderson, D.L. Boger, J. Am. Chem. Soc. 133 (2011) 12285-12292.

    8. [8]

      (a) T. Sugita, J. Koyama, K. Tagahara, Y. Suzuta, Heterocycles 23 (1985) 2789-2791;
      (b) T. Sugita, J. Koyama, K. Tagahara, Y. Suzuta, Heterocycles 24 (1986) 29-30;
      (c) T. Okatani, J. Koyama, K. Tagahara, Y. Suzuta, Heterocycles 26 (1987) 595-597;
      (d) T. Okatani, J. Koyama, Y. Suzuta, K. Tagahara, Heterocycles 27 (1988) 2213-2217;
      (e) T. Okatani, J. Koyama, K. Tagahara, Heterocycles 29 (1989) 1809-1814;
      (f) J. Koyama, T. Ogura, K. Tagahara, Heterocycles 38 (1994) 1595-1600;
      (g) A. Díaz-Oritz, A. de la Hoz, P. Prieto, et al., Synlett 2 (2001) 236-237.

    9. [9]

      (a) T. Itoh, A. Ohsawa, M. Okada, T. Kaihoh, H. Igeta, Chem. Pharm. Bull. 33 (1985) 3050-3052;
      (b) T. Itoh, M. Okada, K. Nagata, K. Yamaguchi, A. Ohsawa, Chem. Pharm. Bull. 38 (1990) 2108-2111.

    10. [10]

      (a) A. Ohsawa, H. Arai, H. Ohnishi, H. Igeta, Chem. Commun. (1980) 1182-1183;
      (b) A. Ohsawa, H. Arai, H. Ohnishi, H. Igeta, Chem. Commun. (1981) 1174-1174;
      (c) A. Ohsawa, H. Arai, H. Ohnishi, et al., J. Org. Chem. 50 (1985) 5520-5523;
      (d) A. Ohsawa, T. Kaihoh, T. Itoh, et al., Chem. Pharm. Bull. 36 (1988) 3838-3848.

    11. [11]

      (a) H. Neunhoeffer, M. Clausen, H.D. Vöetter, et al., Liebigs Ann. Chem. (1985) 1732-1751;
      (b) H. Neunhoeffer, R. Bopp, W. Diehl, Liebigs Ann. Chem. (1993) 367-373;
      (c) M. M. Mättner, H. Neunhoeffer, Synthesis (2003) 413-425.

    12. [12]

      (a) A.S. Duerfeldt, D.L. Boger, J. Am. Chem. Soc. 136 (2014) 2119-2125;
      (b) C.M. Glinkerman, D.L. Boger, J. Am. Chem. Soc. 138 (2016) 12408-12413;
      (c) J. Zhang, V. Shukla, D.L. Boger, J. Org. Chem. 84 (2019) 9397-9445.

    13. [13]

      D.P. Becker, D.L. Flynn, A.E. Moormann, et al., J. Med. Chem. 49 (2006) 1125-1139.
       

    14. [14]

      (a) D.Dubé, R.Fortin, R.Friesen, J.Y.Gauthier, Z. Wang, WO9803484A1, (1998);
      (b) R.W. Friesen, C. Brideau, C.C. Chan, et al., Bioorg. Med. Chem. Lett. 8 (1998) 2777-2782;
      (c) I.W. Davies, J.F. Marcoux, E.G. Corley, et al., J. Org. Chem. 65 (2000) 8415-8420;
      (d) E. Zhang, J. Tang, S. Li, et al., Chem. Eur. J. 22 (2016) 5692-5697.

    15. [15]

      (a) S.P. Mercer, A.J. Roecker, S. Garson, et al., Bioorg. Med. Chem. Lett. 23 (2013) 6620-6624;
      (b) A.J. Roecker, S.P. Mercer, J.D. Schreier, et al., ChemMedChem 9 (2014) 311-322.

  • 加载中
    1. [1]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    2. [2]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    3. [3]

      Qunlong ZhangJingyi KangJingwen WangTiancheng TanZhaoyong Lu . Divergent total synthesis of sesquiterpene (hydro)quinone meroterpenoids dysideanones A and E–G. Chinese Chemical Letters, 2025, 36(3): 109915-. doi: 10.1016/j.cclet.2024.109915

    4. [4]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    7. [7]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    8. [8]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    9. [9]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    10. [10]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    11. [11]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    12. [12]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    13. [13]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    14. [14]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    15. [15]

      Yueying YangHuiru XieXinbo YuYang LiuHui WangHua LiLixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570

    16. [16]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    17. [17]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    18. [18]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    19. [19]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    20. [20]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

Metrics
  • PDF Downloads(13)
  • Abstract views(873)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return