Ag2S nanoparticles as an emerging single-component theranostic agent
-
* Corresponding author.
E-mail addresses: anderson-qian@163.com, zhiyongqian@scu.edu.cn (Z. Qian).
Citation:
Han Ruxia, Peng Jinrong, Xiao Yao, Hao Ying, Jia Yanpeng, Qian Zhiyong. Ag2S nanoparticles as an emerging single-component theranostic agent[J]. Chinese Chemical Letters,
;2020, 31(7): 1717-1728.
doi:
10.1016/j.cclet.2020.03.038
J.U. Menon, P. Jadeja, P. Tambe, et al., Theranostics 3 (2013) 152-166.
doi: 10.7150/thno.5327
P. Huang, L. Bao, C. Zhang, et al., Biomaterials 32 (2011) 9796-9809.
doi: 10.1016/j.biomaterials.2011.08.086
M.F. Kircher, A. de la Zerda, J.V. Jokerst, et al., Nat. Med. 18 (2012) 829-834.
doi: 10.1038/nm.2721
Z. Wang, P. Huang, O. Jacobson, et al., ACS Nano 10 (2016) 3453-3460.
doi: 10.1021/acsnano.5b07521
C. Yang, J. Xu, D. Yang, et al., Chin. Chem. Lett. 29 (2018) 1421-1424.
doi: 10.1016/j.cclet.2018.02.014
Y. Wang, T. Yang, H. Ke, et al., Adv. Mater. 27 (2015) 3874-3882.
doi: 10.1002/adma.201500229
X. Yang, B.P. Venkatesulu, L.S. Mahadevan, et al., J. Biomed. Nanotechnol. 14 (2018) 809-828.
doi: 10.1166/jbn.2018.2536
Z.L. Cheng, A. Al Zaki, J.Z. Hui, V.R. Muzykantov, A. Tsourkas, Science 338 (2012) 903-910.
doi: 10.1126/science.1226338
R.A. Revia, Z.R. Stephen, M. Zhang, Acc. Chem. Res. 52 (2019) 1496-1506.
doi: 10.1021/acs.accounts.9b00101
Y.H. Xu, Y.L. Shan, Y.X. Zhang, et al., Nanotechnology 30 (2019) 425102.
doi: 10.1088/1361-6528/ab2e40
H. Kim, G. Kwak, K. Kim, H.Y. Yoon, I.C. Kwon, Biomaterials 213 (2019) 119207.
doi: 10.1016/j.biomaterials.2019.05.018
B. del Rosal, D. Ruiz, I. Chaves-Coira, et al., Adv. Funct. Mater. 28 (2018) 1806088.
X. Huang, M.A. El-Sayed, J. Adv. Res. 1 (2010) 13-28.
doi: 10.1016/j.jare.2010.02.002
X. Ding, C.H. Liow, M. Zhang, et al., J. Am. Chem. Soc.136 (2014) 15684-15693.
doi: 10.1021/ja508641z
X.H. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128 (2006) 2115-2120.
doi: 10.1021/ja057254a
S. Sun, L. Zhang, K. Jiang, A. Wu, H. Lin, Chem. Mater. 28 (2016) 8659-8668.
doi: 10.1021/acs.chemmater.6b03695
S.T. Lu, D. Xu, R.F. Liao, et al., Comput. Struct. Biotechnol. J.17 (2019) 619-627.
doi: 10.1016/j.csbj.2019.04.005
H. Yang, H. Liang, Y. Xie, Q. Chen, Chin. Chem. Lett. 29 (2018) 1528-1532.
doi: 10.1016/j.cclet.2018.02.011
J.Y. Chen, D.L. Wang, J.F. Xi, et al., Nano Lett. 7 (2007) 1318-1322.
doi: 10.1021/nl070345g
T. Niidome, M. Yamagata, Y. Okamoto, et al., J. Control. Release 114 (2006) 343-347.
doi: 10.1016/j.jconrel.2006.06.017
K.O. Boakye-Yiadom, S. Kesse, Y. Opoku-Damoah, et al., Int. J. Pharm. 564 (2019) 308-317.
doi: 10.1016/j.ijpharm.2019.04.055
J.T. Robinson, K. Welsher, S.M. Tabakman, et al., Nano Res. 3 (2010) 779-793.
doi: 10.1007/s12274-010-0045-1
D.J. Li, W. Nie, L. Chen, et al., J. Biomed. Nanotechnol. 14 (2018) 2003-2017.
doi: 10.1166/jbn.2018.2646
J. Liu, X.P. Zheng, Z.J. Gu, C.Y. Chen, Y.L. Zhao, Nanomed. Nanotechnol. Biol. Med. 12 (2016) 486-487.
M. Zhou, R. Zhang, M.A. Huang, et al., J. Am. Chem. Soc. 132 (2010) 15351-15358.
doi: 10.1021/ja106855m
L. Wang, X.F. Xu, X.G. Mu, et al., Nanotechnology 30 (2019) 415101.
doi: 10.1088/1361-6528/ab2c13
Z. Sheng, D. Hu, M. Zheng, et al., ACS Nano 8 (2014) 12310-12322.
doi: 10.1021/nn5062386
T. Li, C. Li, Z. Ruan, et al., ACS Nano 13 (2019) 3691-3702.
doi: 10.1021/acsnano.9b00452
C.Y. Hu, F. Fan, Y. Qin, et al., J. Biomed. Nanotechnol. 14 (2018) 2018-2030.
doi: 10.1166/jbn.2018.2647
Y.F. Xiao, F.F. An, J.X. Chen, et al., Small 15 (2019) e1903121.
doi: 10.1002/smll.201903121
A. Jordan, R. Scholz, K. Maier-Hauff, et al., J. Neurooncol. 78 (2006) 7-14.
doi: 10.1007/s11060-005-9059-z
B. Liu, H. Zhang, Y. Ding, Chin. Chem. Lett. 29 (2018) 1725-1730.
doi: 10.1016/j.cclet.2018.12.006
N.S. Gao, J.P. Nie, H.F. Wang, et al., J. Biomed. Nanotechnol. 14 (2018) 1883-1897.
doi: 10.1166/jbn.2018.2632
Y. Wang, Y. Song, G. Zhu, D. Zhang, X. Liu, Chin. Chem. Lett. 29 (2018) 1685-1688.
doi: 10.1016/j.cclet.2017.12.004
R. Toy, L. Bauer, C. Hoimes, K.B. Ghaghada, E. Karathanasis, Adv. Drug Deliv. Rev. 76 (2014) 79-97.
doi: 10.1016/j.addr.2014.08.002
Y. Dai, H. Xiao, J. Liu, et al., J. Am. Chem. Soc. 135 (2013) 18920-18929.
doi: 10.1021/ja410028q
J.M. Niers, J.W. Chen, G. Lewandrowski, et al., J. Am. Chem. Soc. 134 (2012) 5149-5156.
doi: 10.1021/ja209868g
A.K. Rengan, M. Jagtap, A. De, R. Banerjee, R. Srivastava, Nanoscale 6 (2014) 916-923.
doi: 10.1039/C3NR04448C
S. Khademi, S. Sarkar, A. Shakeri-Zadeh, et al., Int. J. Biochem. Cell Biol. 6 (2011) 2859-2864.
A.J. Einstein, M.J. Henzlova, S. Rajagopalan, J. Am. Med. Assoc. 298 (2007) 317-323.
doi: 10.1001/jama.298.3.317
Z. Sheng, B. Guo, D. Hu, et al., Adv. Mater. 30 (2018) 1800766.
doi: 10.1002/adma.201800766
J. Zhao, D. Zhong, S. Zhou, J. Mater. Chem. B 6 (2018) 349-365.
M. Mahmoudi, V. Serpooshan, S. Laurent, Nanoscale 3 (2011) 3007-3026.
doi: 10.1039/c1nr10326a
F. Ding, Y. Fan, Y. Sun, F. Zhang, Adv. Healthc. Mater. 8 (2019) 1900260.
D.H. Huang, S.Y. Lin, Q.W. Wang, et al., Adv. Funct. Mater. 29 (2019) 1806546.
doi: 10.1002/adfm.201806546
Kenry, Y. Duan, B. Liu, Adv. Mater. 30 (2018) 1802394.
doi: 10.1002/adma.201802394
P.T. Buz, F.D. Duman, M. Erkisa, et al., Nanomedicine 14 (2019) 969-988.
doi: 10.2217/nnm-2018-0214
Y.F. Hu, J.J. Zhao, X.F. Li, S.L. Zhao, New J. Chem. 43 (2019) 11510-11516.
doi: 10.1039/C9NJ02359C
R.A. Kumar, M. Prasad, G.K. Kumar, M. Venkateswarlu, C. Rajesh, Phys. Scr. 94 (2019)115806.
N. Samadi, S. Narimani, Anal. Bioanal. Chem. Res. 6 (2019) 47-57.
J.C. Wang, G.B. Gao, F.F. Yang, et al., J. Nanopart. Res. 21 (2019) 50.
X.X. Hao, C.Y. Li, Y.J. Zhang, et al., Adv. Mater. 30 (2018) 1804437.
doi: 10.1002/adma.201804437
D.H. Zhao, X.Q. Yang, X.L. Hou, et al., J. Mater. Chem. B 7 (2019) 2484-2492.
doi: 10.1039/C8TB03043J
Y. Sun, C. Qu, H. Chen, et al., Chem. Sci. 7 (2016) 6203-6207.
doi: 10.1039/C6SC01561A
M.H. Wang, N.G. Chen, J. Biophotonics 12 (2019) e201800459.
X. Li, M. Jiang, Y. Li, et al., Mater. Sci. Eng. 100 (2019) 260-268.
doi: 10.1016/j.msec.2019.02.106
Y. Miao, C. Gu, Y. Zhu, et al., ChemBioChem 19 (2018) 2522-2541.
doi: 10.1002/cbic.201800466
H. Wan, H.T. Du, F.F. Wang, H.J. Dai, Adv. Funct. Mater. 29 (2019) 1900566.
doi: 10.1002/adfm.201900566
N. Chen, Y. He, Y. Su, et al., Biomaterials 33 (2012) 1238-1244.
doi: 10.1016/j.biomaterials.2011.10.070
L.V. Garmanchuk, M.N. Borovaya, A.O. Nehelia, et al., Cytol. Genet. 53 (2019) 132-142.
doi: 10.3103/S0095452719020026
Y. Xu, Z.W. Yang, J.B. Qiu, Z.G. Song, Mater. Express 8 (2018) 99-104.
doi: 10.1166/mex.2018.1411
A. Badawi, Physica E 109 (2019) 107-113.
doi: 10.1016/j.physe.2019.01.018
Q.X. Wen, Y.J. Zhang, C.Y. Li, et al., Angew. Chem. Int. Ed. 58 (2019) 11001-11006.
doi: 10.1002/anie.201905643
F.F. An, X.H. Zhang, Theranostics 7 (2017) 3667-3689.
doi: 10.7150/thno.19365
D.H. Zhao, J. Yang, R.X. Xia, et al., Chem. Commun. 54 (2018) 527-530.
doi: 10.1039/C7CC09266K
Y.N. Li, Y.T. Chang, X.F. Lian, et al., J. Biomed. Nanotechnol. 14 (2018) 1515-1542.
doi: 10.1166/jbn.2018.2614
J.C. Hsu, P.C. Naha, K.C. Lau, et al., Nanoscale 10 (2018) 17236-17248.
doi: 10.1039/C8NR03741H
H.D.A. Santos, E.C. Ximendes, M.D.C. Iglesias-de la Cruz, et al., Adv. Funct. Mater. 28 (2018) 1803924.
doi: 10.1002/adfm.201803924
S.I. Sadovnikov, A.I. Gusev, J. Mater. Chem. A 5 (2017) 17676-17704.
doi: 10.1039/C7TA04949H
B. del Rosal, B. Jia, D. Jaque, Adv. Funct. Mater. 28 (2018) 1803733.
R.C. Sharma, Y.A. Chang, Bull. Alloy Phase Diagr. 7 (1986) 263-269.
doi: 10.1007/BF02869003
C. Wagner, J. Chem. Phys. 21 (1953) 1819-1827.
doi: 10.1063/1.1698670
X. Wang, N. Wang, L. Li, et al., RSC Adv. 7 (2017) 32536-32542.
doi: 10.1039/C7RA05561G
P. Jiang, Z.Q. Tian, C.N. Zhu, Z.L. Zhang, D.W. Pang, Dots Chem. Mater. 24 (2011) 3-5.
V.A. Öberg, X. Zhang, M.B. Johansson, E.M.J. Johansson, Chem. Nano Mater. 4 (2018) 1223-1230.
doi: 10.1002/cnma.201800263
C. Zhang, S. Zhang, L. Yu, et al., Mater. Lett. 85 (2012) 77-80.
doi: 10.1016/j.matlet.2012.06.112
W.P. Lim, Z. Zhang, H.Y. Low, W.S. Chin, Angew. Chem. Int. Ed. 43 (2004) 5685-5689.
doi: 10.1002/anie.200460566
L. Lv, H. Wang, Mater. Lett. 121 (2014) 105-108.
doi: 10.1016/j.matlet.2014.01.121
X. Hou, X. Zhang, W. Yang, Y. Liu, X. Zhai, Mater. Res. Bull. 47 (2012) 2579-2583.
doi: 10.1016/j.materresbull.2012.04.144
Y.L. Zhang, X.Y. Xie, M. Liang, et al., Nanotechnology 27 (2016) 225602.
doi: 10.1088/0957-4484/27/22/225602
M. Liu, Z. Xu, B. Li, et al., Mater. Lett. 65 (2011) 555-558.
doi: 10.1016/j.matlet.2010.10.086
H.J. Zhai, H.S. Wang, Mater. Res. Bull. 43 (2008) 2354-2360.
doi: 10.1016/j.materresbull.2007.08.004
Y. Zhao, D. Zhang, W. Shi, F. Wang, Mater. Lett. 61 (2007) 3232-3234.
doi: 10.1016/j.matlet.2006.11.039
J. Kang, J. Yu, A. Li, et al., iScience 15 (2019) 119-126.
doi: 10.1016/j.isci.2019.04.017
S. Yan, H. Wang, Y. Zhang, S. Li, Z. Xiao, J. Non-Cryst. Solids 354 (2008) 5559-5562.
doi: 10.1016/j.jnoncrysol.2008.09.005
D. Wang, C. Hao, W. Zheng, et al., Adv. Mater. 20 (2008) 2628-2632.
doi: 10.1002/adma.200800138
M. Chen, L. Gao, Mater. Lett. 60 (2006) 1059-1062.
doi: 10.1016/j.matlet.2005.10.077
Z. Zhuang, Q. Peng, X. Wang, Y. Li, Angew. Chem. Int. Ed. 46 (2007) 8174-8177.
doi: 10.1002/anie.200701307
M. Karimipour, M. Bagheri, M. Molaei, J. Electron. Mater. 48 (2019) 2555-2562.
doi: 10.1007/s11664-019-06942-z
L. Dong, G. Ji, Y. Liu, et al., Nanoscale 10 (2018) 825-831.
doi: 10.1039/C7NR07263E
X. Lai, X. Feng, J. Hu, et al., J. Nanopart. Res. 17 (2015) 113.
doi: 10.1007/s11051-014-2801-8
P. Basyach, A. Choudhury, Mater. Res. Bull. 48 (2013) 2543-2548.
doi: 10.1016/j.materresbull.2013.03.013
Z. Sun, Z. Yang, J. Zhou, et al., Angew. Chem. Int. Ed. 48 (2009) 2881-2885.
doi: 10.1002/anie.200806082
S. Xiong, B. Xi, K. Zhang, et al., Sci. Rep. 3 (2013) 2177.
doi: 10.1038/srep02177
L. Motte, F. Billoudet, M.P. Pileni, J. Phys. Chem. 99 (1995) 16425-16429.
doi: 10.1021/j100044a033
M.C. Brelle, J.Z. Zhang, L. Nguyen, R.K. Mehra, J. Phys. Chem. A 103 (1999) 10194-10201.
doi: 10.1021/jp991999j
F. Gao, Q.Y. Lu, D.Y. Zhao, Nano Lett. 3 (2003) 85-88.
doi: 10.1021/nl025811a
Z. Liu, J. Liang, D. Xu, J. Lu, Y. Qian, Chem. Commun. (2004) 2724-2725.
F. Hu, C. Li, Y. Zhang, et al., Nano Res. 8 (2015) 1637-1647.
doi: 10.1007/s12274-014-0653-2
M.Y. Qin, X.Q. Yang, K. Wang, et al., Nanoscale 7 (2015) 19484-19492.
doi: 10.1039/C5NR05620A
H.D. Santos, D. Ruiz, G. Lifante, et al., Nanoscale 9 (2017) 2505-2513.
doi: 10.1039/C6NR08534B
G.S. Hong, J.T. Robinson, Y.J. Zhang, et al., Angew. Chem. Int. Ed. 51 (2012) 9818-9821.
doi: 10.1002/anie.201206059
L. Ma, L. Li, J. Nanomater, Mol. Nanothechnol. 5 (2016) 1000182.
N. Mukherjee, S. Jana, G. Gopal Khan, A. Mondal, J. Appl. Phys. 112 (2012) 124324.
X. Wang, S. Zhang, Z. Zhang, Mater. Chem. Phys. 107 (2008) 9-12.
doi: 10.1016/j.matchemphys.2007.07.015
J. Yang, J.Y. Ying, Chem. Commun. (2009) 3187-3189.
D. Ayodhya, G. Veerabhadram, J. Photochem. Photobiol. B 157 (2016) 57-69.
doi: 10.1016/j.jphotobiol.2016.02.002
Z. Wang, Y. Ma, X. Yu, et al., Adv. Funct. Mater. 28 (2018) 1800732.
J. Gao, C. Wu, D. Deng, P. Wu, C. Cai, Adv. Healthc. Mater. 5 (2016) 2437-2449.
doi: 10.1002/adhm.201600545
Y. Wang, X.P. Yan, Chem. Commun. 49 (2013) 3324-3326.
doi: 10.1039/c3cc41141a
J. Zhang, G. Hao, C. Yao, et al., ACS Appl. Mater. Interfaces 8 (2016) 16612-16621.
doi: 10.1021/acsami.6b04738
H.Y. Yang, Y.W. Zhao, Z.Y. Zhang, H.M. Xiong, S.N. Yu, Nanotechnology 24 (2013)055706.
doi: 10.1088/0957-4484/24/5/055706
L. Tan, A. Wan, H. Li, Langmuir 29 (2013) 15032-15042.
doi: 10.1021/la403028j
X. Chen, L. Ding, P. Liu, Q. Wang, Surf. Interface Anal. 46 (2014) 301-306.
doi: 10.1002/sia.5417
R. Gui, J. Sun, D. Liu, Y. Wang, H. Jin, Dalton Trans. 43 (2014) 16690-16697.
doi: 10.1039/C4DT00699B
J.R. Wu, D.H. Bremner, S.W. Niu, et al., J. Biomed. Nanotechnol. 15 (2019) 1415-1431.
doi: 10.1166/jbn.2019.2729
J. Feng, Y. Li, Z. Gao, et al., Biosens. Bioelectron. 99 (2018) 14-20.
doi: 10.1016/j.bios.2017.07.029
X. Lu, L. Li, W. Zhang, C. Wang, Nanotechnology 16 (2005) 2233-2237.
doi: 10.1088/0957-4484/16/10/043
G.Hong, J.T.Robinson, Y.Zhang, etal., Angew.Chem.Int.Ed.51 (2012)9818-9821.
doi: 10.1002/anie.201206059
T. Yang, Y. Tang, L. Liu, et al., ACS Nano 11 (2017) 1848-1857.
doi: 10.1021/acsnano.6b07866
Y.P. Du, B. Xu, T. Fu, et al., J. Am. Chem. Soc. 132 (2010) 1470-1471.
doi: 10.1021/ja909490r
A.K. Suresh, M.J. Doktycz, W. Wang, et al., Acta Biomater. 7 (2011) 4253-4258.
doi: 10.1016/j.actbio.2011.07.007
J. Jang, K. Cho, S.H. Lee, S. Kim, Mater. Lett. 62 (2008) 1438-1440.
doi: 10.1016/j.matlet.2007.08.080
J. Qiao, H. Zhang, G. Li, et al., Sep. Purif. Technol. 211 (2019) 843-856.
doi: 10.1016/j.seppur.2018.10.058
H.I. Elsaeedy, Mater. Sci. Semicond. Process. Mater. Sci. Forum 93 (2019) 360-365.
doi: 10.1016/j.mssp.2019.01.022
X.Z. Yuan, H.Q. Xu, Y. Shan, K.Z. Chen, Chem. Soc. Rev. 809-810 (2014) 39-42.
Z. Zhuang, Q. Peng, Y. Li, Chem. Soc. Rev. 40 (2011) 5492-5513.
doi: 10.1039/c1cs15095b
L.P. Liu, Q. Peng, Y.D. Li, Inorg. Chem. 47 (2008) 5022-5028.
doi: 10.1021/ic800368u
J.H. Xiang, H.Q. Cao, Q.Z. Wu, et al., J. Phys. Chem. C 112 (2008) 3580-3584.
doi: 10.1021/jp710597j
I. Hocaoglu, M.N. Çizmeciyan, R. Erdem, et al., J. Mater. Chem. 22 (2012) 14674-14681.
doi: 10.1039/c2jm31959d
H. Zhang, B.R. Hyun, F.W. Wise, R.D. Robinson, Nano Lett. 12 (2012) 5856-5860.
doi: 10.1021/nl303207s
P. Jiang, C.N. Zhu, Z.L. Zhang, Z.Q. Tian, D.W. Pang, Biomaterials 33 (2012) 5130-5135.
doi: 10.1016/j.biomaterials.2012.03.059
L. Dong, Y. Chu, Y. Liu, L. Li, J. Colloid Interface Sci. 317 (2008) 485-492.
doi: 10.1016/j.jcis.2007.09.055
Y. Zhang, Y. Liu, C. Li, X. Chen, Q. Wang, J. Phys. Chem. C 118 (2014) 4918-4923.
M. Shakouri-Arani, M. Salavati-Niasari, Spectrochim. Acta Part A 133 (2014) 463-471.
doi: 10.1016/j.saa.2014.05.060
X. Wang, W. Liu, J. Hao, X. Fu, B. Xu, Chem. Lett. 34 (2005) 1664-1665.
doi: 10.1246/cl.2005.1664
L.V. Trandafilovi c, V. Djokovi c, N. Bibi c, M.K. Georges, T. Radhakrishnan, Mater. Lett. 64 (2010) 1123-1126.
doi: 10.1016/j.matlet.2010.02.032
H. Zhang, K. Li, Z. Ma, Colloids Surf. A 402 (2012) 94-101.
doi: 10.1016/j.colsurfa.2012.03.028
L. Armelao, R. Bertoncello, E. Cattaruzza, et al., J. Mater. Chem. 12 (2002) 2401-2407.
doi: 10.1039/B203539C
R. Ahmad, R. Srivastava, H. Bhardwaj, et al., ChemistrySelect 3 (2018) 5620-5629.
doi: 10.1002/slct.201702786
B. Bezares, Y. Jana, L. Cottet, A. Castillo, Mater. Express 8 (2018) 450-456.
doi: 10.1166/mex.2018.1448
S.U. Din, M. Hassan, S. Khalid, et al., Mater. Express 8 (2018) 85-92.
doi: 10.1166/mex.2018.1413
F.D. Duman, I. Hocaoglu, D.G. Ozturk, et al., Nanoscale 7 (2015) 11352-11362.
doi: 10.1039/C5NR00189G
Q. Yang, J. Peng, K. Shi, et al., J. Control. Release 308 (2019) 29-43.
doi: 10.1016/j.jconrel.2019.06.031
J. Peng, Q. Yang, Y. Xiao, et al., Adv. Funct. Mater. 29 (2019) 1900004.
doi: 10.1002/adfm.201900004
Q. Yang, J. Peng, Y. Xiao, et al., ACS Appl. Mater. Interfaces 10 (2018) 150-164.
doi: 10.1021/acsami.7b14705
X. Tang, L. Tan, K. Shi, et al., Acta Pharm. Sin. B 8 (2018) 587-601.
doi: 10.1016/j.apsb.2018.05.011
X. Cai, X. Jia, W. Gao, et al., Adv. Funct. Mater. 25 (2015) 2520-2529.
doi: 10.1002/adfm.201403991
C. Tchounwou, S.S. Sinha, B.P. Viraka Nellore, et al., ACS Appl. Mater. Interfaces 7 (2015) 20649-20656.
doi: 10.1021/acsami.5b05225
X. Song, H. Gong, S. Yin, et al., Adv. Funct. Mater. 24 (2014) 1194-1201.
doi: 10.1002/adfm.201302463
G. Wang, X. Wu, D. Cen, et al., J. Biomed. Nanotechnol. 14 (2018) 698-706.
doi: 10.1166/jbn.2018.2548
C. Li, X.Q. Yang, M.Z. Zhang, et al., Theranostics 8 (2018) 5662-5675.
doi: 10.7150/thno.28241
S. Kashida, Solid State Ionics 158 (2003) 167-175.
doi: 10.1016/S0167-2738(02)00768-3
A.I. Kryukov, A.L. Stroyuk, N.N. Zin'chuk, et al., J. Mol. Catal. A:Chem. 221 (2004) 209-221.
doi: 10.1016/j.molcata.2004.07.009
Z. Xu, Y. Bando, W.L. Wang, X.D. Bai, D. Golberg, ACS Nano 10 (2016) 2982-2982.
doi: 10.1021/acsnano.6b00098
X. Zhang, M. Liu, H. Liu, S. Zhang, Biosens. Bioelectron. 56 (2014) 307-312.
doi: 10.1016/j.bios.2014.01.033
G.X. Zhu, Z. Xu, J. Am. Chem. Soc. 133 (2011) 148-157.
doi: 10.1021/ja1090996
L. Zhu, Z. Meng, G. Trisha, W.C. Oh, Chin. J. Catal. 33 (2012) 254-260.
doi: 10.1016/S1872-2067(10)60296-3
J. Liu, P. Raveendran, Z. Shervani, Y. Ikushima, Chem. Commun. (2004) 2582-2583.
F. Lu, Y. Gong, W. Ju, et al., Inorg. Chem. Commun. 106 (2019) 233-239.
doi: 10.1016/j.inoche.2019.06.013
S. Chand, E. Sharma, P. Sharma, J. Alloys Compd. 770 (2019) 1173-1180.
doi: 10.1016/j.jallcom.2018.08.133
D. Asik, M.B. Yagci, F. Demir Duman, H. Yagci Acar, J. Mater. Chem. B 4 (2016) 1941-1950.
S.I. Sadovnikov, A.I. Gusev, Eur. J. Inorg. Chem. 2016 (2016) 4944-4957.
doi: 10.1002/ejic.201600881
S.I. Sadovnikov, A.I. Gusev, J. Mater. Chem. A 5 (2017) 17676-17704.
doi: 10.1039/C7TA04949H
D.H. Ortgies, Á.L. García-Villalón, M. Granado, et al., Nano Res. 12 (2019) 749-757.
doi: 10.1007/s12274-019-2280-4
Q.B. Wang, Nanomed.-Nanotechnol. Biol. Med. 12 (2016) 464-464.
L. Xing, S. Xu, J. Cui, L. Wang, J. Nanosci. Nanotechnol. 19 (2019) 4549-4555.
doi: 10.1166/jnn.2019.16351
D. Ozkan Vardar, S. Aydin, I. Hocaoglu, F.H. Yagci Acar, N. Basaran, Chem. Biol. Interact. 291 (2018) 212-219.
doi: 10.1016/j.cbi.2018.06.032
J. Chen, T. Zhang, L. Feng, et al., Mater. Lett. 96 (2013) 224-227.
doi: 10.1016/j.matlet.2012.11.067
C. Lu, G. Chen, B. Yu, H. Cong, Adv. Eng. Mater. 20 (2018) 1700940.
M.L. Pang, J.Y. Hu, H.C. Zeng, J. Am. Chem. Soc. 132 (2010) 10771-10785.
doi: 10.1021/ja102105q
D. Ayodhya, G. Veerabhadram, J. Mol. Struct. 1186 (2019) 423-433.
doi: 10.1016/j.molstruc.2019.03.048
L.L. Guo, H. Chen, N.Y. He, Y. Deng, Chin. Chem. Lett. 29 (2018) 1829-1833.
doi: 10.1016/j.cclet.2018.10.038
J. Sheng, L. Wang, Y. Han, et al., Small 14 (2018) 1702529.
C.Y. Li, F. Li, Y.J. Zhang, et al., ACS Nano 9 (2015) 12255-12263.
doi: 10.1021/acsnano.5b05503
C. Levard, B.C. Reinsch, F.M. Michel, et al., Environ. Sci. Technol. 45 (2011) 5260-5266.
doi: 10.1021/es2007758
G. Rotko, J. Cichos, E. Wysokinska, M. Karbowiak, W. Kalas, Colloids Surf. B Biointerfaces 181 (2019) 119-124.
doi: 10.1016/j.colsurfb.2019.04.068
H. Chen, B. Li, M. Zhang, et al., Nanoscale 6 (2014) 12580-12590.
doi: 10.1039/C4NR03613A
F.D.Duman, M.Erkisa, R.Khodadust, etal., Nanomedicine12 (2017)2319-2333.
doi: 10.2217/nnm-2017-0180
C. Li, Y. Zhang, G. Chen, et al., Adv. Mater. 29 (2017) 1605754.
doi: 10.1002/adma.201605754
C. Song, Y. Zhang, C. Li, et al., Adv. Funct. Mater. 26 (2016) 4192-4200.
doi: 10.1002/adfm.201600417
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Jia-Qi Feng , Xiang Tian , Rui-Ge Cao , Yong-Xiu Li , Wen-Long Liu , Rong Huang , Si-Yong Qin , Ai-Qing Zhang , Yin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657
Xiao-Fang Lv , Xiao-Yun Ran , Yu Zhao , Rui-Rui Zhang , Li-Na Zhang , Jing Shi , Ji-Xuan Xu , Qing-Quan Kong , Xiao-Qi Yu , Kun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Ziyou Zhang , Te Ji , Hongliang Dong , Zhiqiang Chen , Zhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Qiuye Wang , Yabing Sun , Liangxue Lai , Haijing Cui , Yonglong Ye , Ming Yang , Weihao Zhu , Bo Yuan , Quanliang Mao , Wenzhi Ren , Aiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212
Yunlong Li , Xinyu Zhang , Shuang Liu , Chunsheng Li , Qiang Wang , Jin Ye , Yong Lu , Jiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Shengwen Guan , Zhaotong Wei , Ningxu Han , Yude Wei , Bin Xu , Ming Wang , Junjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202