Citation: Jianxia Chen, Chaolumen Bai, Hongpeng Ma, Dan Liu, Yong-Sheng Bao. Nano palladium catalyzed C(sp3)—H bonds arylation by a transient directing strategy[J]. Chinese Chemical Letters, ;2021, 32(1): 465-469. doi: 10.1016/j.cclet.2020.02.055 shu

Nano palladium catalyzed C(sp3)—H bonds arylation by a transient directing strategy

    * Corresponding author.
    E-mail address: sbbys197812@163.com (Y.-S. Bao).
  • Received Date: 9 January 2020
    Revised Date: 16 February 2020
    Accepted Date: 28 February 2020
    Available Online: 29 February 2020

Figures(5)

  • Reported herein is the first example of heterogeneous palladium catalyzed C(sp3)-H bonds arylation by a transient-ligand-directed strategy. Using supported palladium (metallic state) nanopariticles as catalyst, a wide range of aryl iodides undergo the coupling with various o-methylbenzaldehyde derivatives to assemble a library of highly selective and functionalized o-benzylbenzaldehydes. The stability of the catalyst was easily recovered four runs without significant loss of activity. The XPS analysis of the catalyst before and after reaction indicated that the reaction might be carried out by a catalytic cycle starting with Pd0.
  • 加载中
    1. [1]

      (a) N. Selander, K.J. Szabo', Chem. Rev. 111 (2011) 2048-2076;
      (b) V.G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc.127 (2005) 13154-13155;
      (c) A. Roglans, A. Pla-Quintana, M. Moreno-Maňas, Chem. Rev. 106 (2006) 4622-4643;
      (d) H.A. Chiong, Q.N. Pham, O. Daugulis, J. Am. Chem. Soc. 129 (2007) 9879-9884;
      (e) K.L. Hull, M.S. Sanford, J. Am. Chem. Soc. 131 (2009) 9651-9653;
      (f)D. Kalyani, N.R. Deprez, L.V. Desai, M.S. Sanford, J. Am. Chem. Soc.127 (2005) 7330-7331;
      (g) J. Park, M. Kim, S. Sharma, et al., Chem. Commun. 49 (2013) 1654-1656;
      (h)Y.Gao, Y.B.Huang, W.Q. Wu, K.Huang, H.F.Jiang, Chem. Commun. 50 (2014) 8370-8373.

    2. [2]

      (a) Z. Huang, H.N. Lim, F. Mo, M.C. Young, G. Dong, Chem. Soc. Rev. 44 (2015) 7764-7786;
      (b) X. Chen, K.M. Engle, D.H. Wang, J.Q. Yu, Angew. Chem. Int. Ed. 48 (2009) 5094-5115;
      (c) D. Alberico, M.E. Scott, M. Lautens, Chem. Rev. 107 (2007) 174-238;
      (d) J.A. Labinger, J.E. Bercaw, Nature 417 (2002) 507-514;
      (e) B.D. Dangel, K. Godula, S.W. Youn, B. Sezen, D. Sames, J. Am. Chem. Soc. 124 (2002) 11856.

    3. [3]

      (a) T.W. Lyons, M.S. Sanford, Chem. Rev. 110 (2010) 1147-1169;
      (b) O. Daugulis, J. Roane, L.D. Tran, Acc. Chem. Res. 48 (2015) 1053-1064;
      (c) G. He, B. Wang, W.A. Nack, G. Chen, Acc. Chem. Res. 49 (2016) 635-645;
      (d) O. Daugulis, H.Q. Do, D. Shabashov, Acc. Chem. Res. 42 (2009) 1074-1086;
      (e) O. Baudoin, Chem. Soc. Rev. 40 (2011) 4902-4911.

    4. [4]

      (a) J.T. Joseph, J.C. Pablo, I.S. Noam, S.S. Melanie, Nature 531 (2016) 220-224;
      (b) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 52 (2013) 11726-11743;
      (c) P.M. Vaibhav, J.A. Garcia-Lopez, ChemCatChem 9 (2017) 1149-1156;
      (d) B.J. Knight, J.O. Rothbaum, E.M. Ferreira, Chem. Sci. 7 (2016) 1982-1987;
      (e) Q. Zhang, B.F. Shi, Chin. J. Chem. 37 (2019) 647-656;
      (f) Z. Chen, B. Wang, J. Zhang, et al., Org. Chem. Front. 2 (2015) 1107-1295;
      (g) H. Li, B.J. Li, Z.J. Shi, Catal. Sci. Technol. 1 (2011) 191-206.

    5. [5]

      (a) C.H. Jun, H. Lee, J.B. Hong, J. Org. Chem. 62 (1997) 1200-1201;
      (b) R.B. Bedford, S.J. Coles, M.B. Hursthouse, M.E. Limmert, Angew. Chem. Int. Ed. 42 (2003) 112-114;
      (c) F. Mo, G. Dong, Science 345 (2014) 68-72;
      (d) Q.J. Yao, S. Zhang, B.B. Zhan, B.F. Shi, Angew. Chem. Int. Ed. 56 (2017) 6617-6621;
      (e) G. Liao, Q.J. Yao, Z.Z. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 3661-3665;
      (f) G. Liao, B. Li, H.M. Chen, et al., Angew. Chem. Int. Ed. 57 (2018) 17151-17155;
      (g) G. Liao, H.M. Chen, Y.N. Xia, et al., Angew. Chem. Int. Ed. 58 (2019) 11464-11468;
      (h) S. Zhang, Q.J. Yao, G. Liao, et al., ACS Catal. 9 (2019) 1956-1961;
      (i) H.M. Chen, S. Zhang, G. Liao, et al., Organometallics 38 (2019) 4022-4028.

    6. [6]

      F.L. Zhang, K. Hong, T.J. Li, H. Park, J.Q. Yu, Science 351(2016) 252-256.  doi: 10.1126/science.aad7893

    7. [7]

      F. Ma, M. Lei, L. Hu, Org. Lett. 18(2016) 2708-2711.  doi: 10.1021/acs.orglett.6b01170

    8. [8]

      K. Yang, Q. Li, Y. Liu, G. Li, H. Ge, J. Am. Chem. Soc. 138(2016) 12775-12778.  doi: 10.1021/jacs.6b08478

    9. [9]

      (a) D.T. D. Tang, K.D. Collins, F. Glorius, J. Am. Chem. Soc. 135 (2013) 7450-7453;
      (b) S. Squez-Cespedes, A. Ferry, L. Candish, F. Glorius, Angew. Chem. Int. Ed. 54 (2015) 5772-5776;
      (c) S. Korwar, M. Burkholder, S.E. Gilliland Ⅲ, et al., Chem. Commun. 53 (2017) 7022-7025;
      (d) Y.M. A. Yamada, Y. Yuyama, T. Sato, S. Fujikawa, Y. Uozumi, Angew. Chem. Int. Ed. 53 (2014) 127-131;
      (e) V.A. Zinovyeva, M.A. Vorotyntsev, I. Bezverkhyy, D. Chaumont, J.C. Hierso, Adv. Funct. Mater. 21 (2011) 1064-1075;

    10. [10]

      (a) D. Zhang, B. Zhaorigetu, Y.S. Bao, J. Phys. Chem. C 119 (2015) 20426-20432;
      (b) Y.S. Bao, D. Zhang, M. Jia, B. Zhaorigetu, Green Chem. 18 (2016) 2072-2077.

    11. [11]

      (a) V.G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 127 (2005) 13154-13155;
      (b) T. Neetipalli, D. Arnab, S. Anurag, et al., Adv. Synth. Catal. 361 (2019) 1441-1446.

    12. [12]

      Y. Rozita, R. Brydson, T.P. Comyn, et al. , ChemCatChem 5(2013) 2695-2706.  doi: 10.1002/cctc.201200880

    13. [13]

      T. Pillo, R. Zimmermann, P. Steiner, S. Hüfner, J. Phys. Condens. Matter 9(1997) 3987-3999.

    14. [14]

      K. Hong, H. Park, J.Q. Yu, ACS Catal. 7(2017) 6938-6941.  doi: 10.1021/acscatal.7b02905

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    4. [4]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    5. [5]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    6. [6]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    7. [7]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    8. [8]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    9. [9]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    10. [10]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    11. [11]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    12. [12]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    13. [13]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    14. [14]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    15. [15]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    16. [16]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    17. [17]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    18. [18]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    19. [19]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    20. [20]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

Metrics
  • PDF Downloads(5)
  • Abstract views(1009)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return