Citation: He Wei-Bao, Gao Lan-Qing, Chen Xin-Jie, Wu Zhi-Lin, Huang Ying, Cao Zhong, Xu Xin-Hua, He Wei-Min. Visible-light-initiated malic acid-promoted cascade coupling/ cyclization of aromatic amines and KSCN to 2-aminobenzothiazoles without photocatalyst[J]. Chinese Chemical Letters, ;2020, 31(7): 1895-1898. doi: 10.1016/j.cclet.2020.02.011 shu

Visible-light-initiated malic acid-promoted cascade coupling/ cyclization of aromatic amines and KSCN to 2-aminobenzothiazoles without photocatalyst

    * Corresponding authors.
    E-mail addresses: xinhuaxu2019@yeah.net (X.-H. Xu) , weiminhe2016@yeah.net (W.-M. He).
  • Received Date: 24 December 2019
    Revised Date: 21 January 2020
    Accepted Date: 7 February 2020
    Available Online: 8 February 2020

Figures(6)

  • By using ambient air as the oxidant and malic acid as the promoter, a practical method for the preparation of 2-aminobenzothiazoles through visible-light-initiated cascade reaction of aromatic amines and KSCN in eco-friendly bis(methoxypropy)ether under metal-, hazardous additive-, photocatalyst-free conditions was established.
  • 加载中
    1. [1]

      (a) W.M. Zhu, W.H. Bao, W.W. Ying, et al., Asian J. Org. Chem. 7 (2018) 337-340;
      (b) F.L. Zeng, X.L. Chen, S.Q. He, et al., Org. Chem. Front. 6 (2019) 1476-1480;
      (c) R. Liu, M. Li, W. Xie, et al., J. Org. Chem. 84 (2019) 11763-11773;
      (d) L.Y. Xie, Y.L. Chen, L. Qin, et al., Org. Chem. Front. 6 (2019) 3950-3955;
      (e) Z. Gan, Q. Yan, G. Li, et al., Adv. Synth. Catal. 361 (2019) 4558-4567;
      (f) B. Liu, L. Cheng, P. Hu, et al., Chem. Commun. 55 (2019) 4817-4820;
      (g) K.J. Liu, J.H. Deng, J. Yang, et al., Green Chem. 22 (2020) 433-438.

    2. [2]

      (a) Y. Gu, F. Jerome, Chem. Soc. Rev. 42 (2013) 9550-9570;
      (b) B. Lai, R. Bai, Y. Gu, ACS Sustain. Chem. Eng. 6 (2018) 17076-17086;
      (c) G.P. Yang, X. Wu, B. Yu, C. Hu, ACS Sustain. Chem. Eng. 7 (2019) 3727-3732;
      (d) M. Li, X. Dong, N. Zhang, F. Jérôme, Y. Gu, Green Chem. 21 (2019) 4650-4655;
      (e) W.H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. 30 (2019) 2259-2262.

    3. [3]

      (a) D. Xia, Y. Li, T. Miao, P. Li, L. Wang, Green Chem. 19 (2017) 1732-1739;
      (b) R. Li, X. Chen, S. Wei, et al., Adv. Synth. Catal. 360 (2018) 4807-4813;
      (c) B.G. Cai, J. Xuan, W.J. Xiao, Sci. Bull. 64 (2019) 337-350;
      (d) Z. Wang, X. Ji, J. Zhao, H. Huang, Green Chem. 21 (2019) 5512-5516;
      (e) M. Zhang, M.N. Chen, J.M. Li, N. Liu, Z.H. Zhang, ACS Comb. Sci. 21 (2019) 685-691;
      (f) J. Wu, Y. Zhang, X. Gong, Y. Meng, C. Zhu, Org. Biomol. Chem.17 (2019) 3507-3513;
      (g) L.Y. Xie, J.L. Hu, Y.X. Song, et al., ACS Sustain. Chem. Eng. 7 (2019) 19993-19999;
      (h) Y. Liu, Q.L. Wang, Z. Chen, et al., Chem. Commun. 55 (2019) 12212-12215;
      (i) Q. Liu, F. Liu, H. Yue, et al., Adv. Synth. Catal. 361 (2019) 5277-5282;
      (j) G. Li, Q. Yan, Z. Gan, et al., Org. Lett. 21 (2019) 7938-7942;
      (k) S. He, X. Chen, F. Zeng, et al., Chin. Chem. Lett. (2020), doi: http://dx.doi.org/10.1016/j.cclet.2019.12.031;
      (l) W. Ou, R. Zou, M. Han, L. Yu, C. Su, Chin. Chem. Lett. (2020), doi: http://dx.doi.org/10.1016/j.cclet.2019.12.017;
      (m) P. Bao, F. Liu, Y. Lv, et al., Org. Chem. Front. 7 (2020) 492-498;
      (n) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31 (2020) 67-70.

    4. [4]

      (a) K.J. Liu, J.H. Deng, T.Y. Zeng, et al., Chin. Chem. Lett. (2020), doi: http://dx.doi.org/10.1016/j.cclet.2020.01.036;
      (b) L.Y. Xie, Y.S. Lu, H.R. Ding, et al., Chin. J. Catal. 41 (2020) 1168-1173;
      (c) D.Q. Dong, L.X. Li, G.H. Li, et al., Chin. J. Catal. 40 (2019) 1494-1498;
      (d) D.Q. Dong, W.J. Chen, D.M. Chen, et al., Chin. J. Org. Chem. 39 (2019) 3190-3198;
      (e) L.Y. Xie, Y.S. Bai, X.Q. Xu, et al., Green Chem. 22 (2020) 1720-1725.

    5. [5]

      (a) M. Zhang, Q.Y. Fu, G. Gao, et al., ACS Sustain. Chem. Eng. 5 (2017) 6175-6182;
      (b) L. Zhao, P. Li, X. Xie, L. Wang, Org. Chem. Front. 5 (2018) 1689-1697;
      (c) L. Zhao, P. Li, H. Zhang, L. Wang, Org. Chem. Front. 6 (2019) 87-93;
      (d) Y. Han, Y. Jin, M. Jiang, H. Yang, H. Fu, Org. Lett. 21 (2019) 1799-1803;
      (e) Y.T. Xu, C.Y. Li, X.B. Huang, et al., Green Chem. 21 (2019) 4971-4975.

    6. [6]

      (a) J. Yang, J.N. Tan, Y. Gu, Green Chem. 14 (2012) 3304-3317;
      (b) G. Gao, P. Wang, P. Liu, et al., Chin. J. Org. Chem. 38 (2018) 846-854;
      (c) M. Sun, J. Jiang, J. Chen, Q. Yang, X. Yu, Tetrahedron 75 (2019) 130456;
      (d) L. Peng, Z. Hu, Q. Lu, et al., Chin. Chem. Lett. 30 (2019) 2151-2156;
      (e) Z. Cao, Q. Zhu, Y.W. Lin, W.M. He, Chin. Chem. Lett. 30 (2019) 2132-2138;
      (f) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237-1240;
      (g) X.M. Xu, D.M. Chen, Z.L. Wang, Chin. Chem. Lett. 31 (2020) 49-57.

    7. [7]

      (a) L. Wang, D. Xiong, L. Jie, C. Yu, X. Cui, Chin. Chem. Lett. 29 (2018) 907-910;
      (b) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Synth. Catal. 361 (2019) 1766-1770;
      (c) K. Sun, X.L. Chen, Y.L. Zhang, et al., Chem. Commun. 55 (2019) 12615-12618;
      (d) L. Wang, Y. Zhang, M. Zhang, et al., Tetrahedron Lett. 60 (2019) 1845-1848;
      (e) Q. Huang, L. Zhu, D. Yi, X. Zhao, W. Wei, Chin. Chem. Lett. 31 (2020) 373-376;
      (f) X. Gong, G. Li, Z. Gan, et al., Asian J. Org. Chem. 8 (2019) 1472-1478;
      (g) Z. Yang, Z. Song, L. Jie, L. Wang, X. Cui, Chem. Commun. 55 (2019) 6094-6097;
      (h) Y. Zhang, K. Sun, Q. Lv, et al., Chin. Chem. Lett. 30 (2019) 1361-1368;
      (i) J. Sun, Y. Li, Y. Gui, et al., Chin. Chem. Lett. 30 (2019) 569-572;
      (j) Z. Shen, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 30 (2019) 1374-1378;
      (k) X. Mi, Y. Kong, J. Zhang, C. Pi, X. Cui, Chin. Chem. Lett. 30 (2019) 2295-2298;
      (l) X.X. Meng, Q.Q. Kang, J.Y. Zhang, et al., Green Chem. 22 (2020) 1388-1392;
      (m) M.Y. Min, R.J. Song, X.H. Ouyang, J.H. Li, Chem. Commun. 55 (2019) 3646-3649;
      (n) Y.C. Wu, S.S. Jiang, R.J. Song, J.H. Li, Chem. Commun. 55 (2019) 4371-4374;
      (o) X.P. Ma, C.M. Nong, J. Zhao, et al., Adv. Synth. Catal. 362 (2020) 478-486;
      (p) H.P. Zhao, G.C. Liang, S.M. Nie, et al., Green Chem. 22 (2020) 404-410;
      (q) L. Zhu, W. Liao, H. Chang, X. Liu, S. Miao, ChemistrySelect 5 (2020) 829-833;
      (r) Z. Wang, Q. Liu, X. Ji, G.J. Deng, H. Huang, ACS Catal. 10 (2020) 154-159;
      (s) Q.Q. Han, G.H. Li, Y.Y. Sun, et al., Tetrahedron Lett. 61 (2020) 151704.

    8. [8]

      A.Catalano, A. Carocci, I. Defrenza, et al., Eur. J. Med. Chem. 64 (2013) 357-364.  doi: 10.1016/j.ejmech.2013.03.064

    9. [9]

      (a) Y. Xu, B. Li, X. Zhang, X. Fan, J. Org. Chem. 82 (2017) 9637-9646;
      (b) M. Salah, M. Abdel-Halim, M. Engel, MedChemComm 9 (2018) 1045-1053;
      (c) T.L. Dadmal, S.D. Katre, M.C. Mandewale, R.M. Kumbhare, New J. Chem. 42 (2018) 776-797.

    10. [10]

      H. Jiang, W. Yu, X. Tang, J. Li, W. Wu, J. Org. Chem. 82 (2017) 9312-9320.  doi: 10.1021/acs.joc.7b01122

    11. [11]

      (a) K.J. Liu, T.Y. Zeng, J.L. Zeng, et al., Chin. Chem. Lett. 30 (2019) 2304-2308;
      (b) S. Peng, D. Hu, J.L. Hu, et al., Adv. Synth. Catal. 361 (2019) 5721-5726;
      (c) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30 (2019) 2287-2290;
      (d) Z. Wang, W.M. He, Chin. J. Org. Chem. 39 (2019) 3594-3595;
      (e) L. Peng, Z. Hu, Z. Tang, Y. Jiao, X. Xu, Chin. Chem. Lett. 30 (2019) 1481-1487;
      (f) W.M. He, Y.W. Lin, D.H. Yu, Sci. China Chem. 63 (2020) 291-293;
      (g) S. Peng, Y.W. Lin, W.M. He, Chin. J. Org. Chem. 40 (2020) 541-542;
      (h) Y.Y. Peng, Y. Wang, X.Y. Yu, et al., Chem. J. Chin. Univ. 41 (2020) 268-276;
      (i) Q.W. Gui, X. He, W. Wang, et al., Green Chem. 22 (2020) 118-122.

    12. [12]

      (a) X. Zhu, P. Li, Q. Shi, L. Wang, Green Chem. 18 (2016) 6373-6379;
      (b) Q. Shi, P. Li, X. Zhu, L. Wang, Green Chem. 18 (2016) 4916-4923;
      (c) Q. Liu, L. Wang, H. Yue, et al., Green Chem. 21 (2019) 1609-1603;
      (d) L. Zou, P. Li, B. Wang, L. Wang, Chem. Commun. 55 (2019) 3737-3740;
      (e) G. Li, Q. Yan, X. Gong, X. Dou, D. Yang, ACS Sustain. Chem. Eng. 7 (2019) 14009-14015.

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    3. [3]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    4. [4]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    5. [5]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    8. [8]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    9. [9]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    10. [10]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    11. [11]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    12. [12]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    13. [13]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    14. [14]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    15. [15]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    16. [16]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    17. [17]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    18. [18]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    19. [19]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    20. [20]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

Metrics
  • PDF Downloads(5)
  • Abstract views(928)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return