Citation: Liu Kai-Jian, Deng Ji-Hui, Zeng Tang-Yu, Chen Xin-Jie, Huang Ying, Cao Zhong, Lin Ying-Wu, He Wei-Min. 1, 2-Diethoxyethane catalyzed oxidative cleavage of gem-disubstituted aromatic alkenes to ketones under minimal solvent conditions[J]. Chinese Chemical Letters, ;2020, 31(7): 1868-1872. doi: 10.1016/j.cclet.2020.01.036 shu

1, 2-Diethoxyethane catalyzed oxidative cleavage of gem-disubstituted aromatic alkenes to ketones under minimal solvent conditions

    *Corresponding author.
    E-mail address: weiminhe2016@yeah.net (W.-M. He).
  • Received Date: 21 November 2019
    Revised Date: 1 January 2020
    Accepted Date: 17 January 2020
    Available Online: 17 January 2020

Figures(7)

  • Aerobic oxidation using pure dioxygen gas as the oxidant has attracted much attention, but its application in synthetic chemistry has been significantly hampered by the complexity of catalytic system and potential risk of high-energy dioxygen gas. By employing 1, 2-diethoxyethane as a catalyst and ambient air as an oxidant, an efficient protocol for the construction of various aryl-alkyl and diaryl ketones through oxidative cleavage of gem-disubstituted aromatic alkenes under minimal solvent conditions has been achieved.
  • 加载中
    1. [1]

      (a) H. Yi, G. Zhang, H. Wang, et al., Chem. Rev. 117 (2017) 9016-9085;
      (b) M.H. Huang, W.J. Hao, G. Li, S.J. Tu, B. Jiang, Chem. Commun. (Camb.) 54 (2018) 10791-10811;
      (c) X. Gong, G. Li, Z. Gan, et al., Asian J. Org. Chem. 8 (2019) 1472-1478;
      (d) Y. Zhang, K. Sun, Q. Lv, et al., Chin. Chem. Lett. 30 (2019) 1361-1368;
      (e) H. Yue, P. Bo, B.L. Wang, et al., Chin. J. Org. Chem. 39 (2019) 463-468;
      (f) G.H. Li, D.Q. Dong, Q. Deng, S.Q. Yan, Z.L. Wang, Synthesis 51 (2019) 3313-3319;
      (g) Q. Huang, L. Zhu, D. Yi, X. Zhao, W. Wei, Chin. Chem. Lett. 31 (2020) 373-376;
      (h) K. Sun, X.L. Chen, Y.L. Zhang, et al., Chem. Commun. (Camb.) 55 (2019) 12615-12618;
      (i) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31 (2020) 67-70;
      (j) G.H. Li, D.Q. Dong, X.Y. Yu, Z.L. Wang, New J. Chem. 43 (2019) 1667-1670;
      (k) K. Sun, Y.F. Si, X.L. Chen, et al., Adv. Synth. Catal. 361 (2019) 4483-4488;
      (l) L. Wang, Y. Zhang, M. Zhang, et al., Tetrahedron Lett. 60 (2019) 1845-1848;
      (m) S. Liu, K. Chen, W.J. Hao, et al., J. Org. Chem. 84 (2019) 1964-1971;
      (n) K. Sun, B. Luan, Z. Liu, et al., Org. Biomol. Chem. 17 (2019) 4208-4211;
      (o) L. Xiong, H. Hu, C.W. Wei, B. Yu, Eur. J. Org. Chem. 2020 (2020) 1588-1597.

    2. [2]

      C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 41 (2012) 3464-3484.  doi: 10.1039/c2cs15323h

    3. [3]

      (a) X. Ji, D. Li, X. Zhou, H. Huang, G.J. Deng, Green Chem. 19 (2017) 619-622;
      (b) D.F. Jiang, J.Y. Hu, W.J. Hao, et al., Org. Chem. Front. 5 (2018) 189-196;
      (c) X. Chen, Z. Wang, H. Huang, G.J. Deng, Adv. Synth. Catal. 360 (2018) 4017-4022;
      (d) F.L. Zeng, X.L. Chen, S.Q. He, et al., Org. Chem. Front. 6 (2019) 1476-1480;
      (e) Y. Xia, H. Huang, F. Zhang, G.J. Deng, Org. Lett. 21 (2019) 7489-7492;
      (f) Z. Gan, Q. Yan, G. Li, et al., Adv. Synth. Catal. 361 (2019) 4558-4567;
      (g) X. Ji, M. Tan, M. Fu, G.J. Deng, H. Huang, Org. Biomol. Chem.17 (2019) 4979-4983;
      (h) K. Chen, W.J. Hao, S.J. Tu, B. Jiang, Green Chem. 21 (2019) 675-683;
      (i) X.Zhang, S.Dong, Q.Ding, X.Fan, G.Zhang, Chin.Chem.Lett.30 (2019) 375-378;
      (j) K.J. Liu, T.Y. Zeng, J.L. Zeng, et al., Chin. Chem. Lett. 30 (2019) 2304-2308;
      (k) K.J. Liu, J.H. Deng, J. Yang, et al., Green Chem. 22 (2020) 433-438;
      (l) W.M. He, Y.W. Lin, D. Yu, Sci. China Chem. 63 (2020) 291-293.

    4. [4]

      (a) J.P. Wan, Y. Gao, L. Wei, Chem. Asian J. 11 (2016) 2092-2102;
      (b) G. Urgoitia, R. SanMartin, M.T. Herrero, E. DomÃnguez, ACS Catal. 7 (2017) 3050-3060.

    5. [5]

      T.J. Fisher, P.H. Dussault, Tetrahedron 73 (2017) 4233-4258.  doi: 10.1016/j.tet.2017.03.039

    6. [6]

      (a) K. Miyamoto, N. Tada, M. Ochiai, J. Am. Chem. Soc. 129 (2007) 2772-2773;
      (b) F.V. Singh, H.M.S. Milagre, M.N. Eberlin, H.A. Stefani, Tetrahedron Lett. 50 (2009) 2312-2316;
      (c) A. Rajagopalan, M. Lara, W. Kroutil, Adv. Synth. Catal. 355 (2013) 3321-3335;
      (d) X. Zeng, D. Xu, C. Miao, C. Xia, W. Sun, RSC Adv. 4 (2014) 46494-46497;
      (e) D.J. Lippincott, P.J. Trejo-Soto, F. Gallou, B.H. Lipshutz, Org. Lett. 20 (2018) 5094-5097.

    7. [7]

      (a) M.M. Hossain, W.K. Huang, H.J. Chen, P.H. Wang, S.G. Shyu, Green Chem. 16 (2014) 3013-3017;
      (b) C. Mi, X.G. Meng, X.H. Liao, X. Peng, RSC Adv. 5 (2015) 69487-69492;
      (c) A. Gonzalez-de-Castro, J. Xiao, J. Am. Chem. Soc. 137 (2015) 8206-8218;
      (d) G. Urgoitia, R. SanMartin, M.T. Herrero, E. DomÃnguez, Adv. Synth. Catal. 358 (2016) 1150-1156;
      (e) Y. Liu, D. Xue, C. Li, J. Xiao, C. Wang, Catal. Sci. Technol. 7 (2017) 5510-5514;
      (f) C.A. Hone, A. OâorgTM Kearney-McMullan, R. Munday, C.O. Kappe, ChemCatChem 9 (2017) 3298-3302;
      (g) C. Zhu, D. Wei, Y. Wu, et al., J. Alloys. Compd. 778 (2019) 731-740;
      (h) B. Xiong, X. Zeng, S. Geng, et al., Green Chem. 20 (2018) 4521-4527.

    8. [8]

      (a) T. Wang, N. Jiao, J. Am. Chem. Soc. 135 (2013) 11692-11695;
      (b) G.Z. Wang, X.L. Li, J.J. Dai, H.J. Xu, J. Org. Chem. 79 (2014) 7220-7225;
      (c) Y. Imada, Y. Okada, K. Noguchi, K. Chiba, Angew. Chem. Int. Ed. 58 (2019) 125-129;
      (d) Z. Cheng, W. Jin, C. Liu, Org. Chem. Front. 6 (2019) 841-845.

    9. [9]

      P.M. Osterberg, J.K. Niemeier, C.J. Welch, et al., Org. Process Res. Dev. 19 (2015) 1537-1543.  doi: 10.1021/op500328f

    10. [10]

      (a) X. Wang, C. Wang, Y. Liu, J. Xiao, Green Chem. 18 (2016) 4605-4610;
      (b) B. Liu, F. Jin, T. Wang, X. Yuan, W. Han, Angew. Chem. Int. Ed. 56 (2017) 12712-12717;
      (c) S. Li, B. Zhu, R. Lee, B. Qiao, Z. Jiang, Org. Chem. Front. 5 (2018) 380-385;
      (d) R. Li, X. Chen, S. Wei, et al., Adv. Synth. Catal. 360 (2018) 4807-4813;
      (e) B. Liu, P. Hu, F. Xu, et al., Comm. Chem. 2 (2019) 5-12;
      (f) D.Q. Dong, L.X. Li, G.H. Li, et al., Chin. J. Catal. 40 (2019) 1494-1498;
      (g) L.Y. Xie, J.L. Hu, Y.X. Song, et al., ACS Sustainable Chem. Eng. 7 (2019) 19993-19999;
      (h) L.Y. Xie, Y.S. Lu, H.R. Ding, et al., Chinese J. Catal. 41 (2020) 1168-1173;
      (i) G. Li, Q. Yan, X. Gong, X. Dou, D. Yang, ACS Sustainable Chem. Eng. 7 (2019) 14009-14015;
      (j) L.Y. Xie, Y.L. Chen, L. Qin, et al., Org. Chem. Front. 6 (2019) 3950-3955;
      (k) Z. Wang, X. Ji, J. Zhao, H. Huang, Green Chem. 21 (2019) 5512-5516;
      (l) Y. Lv, P. Bao, H. Yue, J.S. Li, W. Wei, Green Chem. 21 (2019) 6051-6055.

    11. [11]

      (a) L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237-1240;
      (b) L. Peng, Z. Hu, Q. Lu, et al., Chin. Chem. Lett. 30 (2019) 2151-2156;
      (c) L. Peng, Z. Hu, Z. Tang, Y. Jiao, X. Xu, Chin. Chem. Lett. 30 (2019) 1481-1487;
      (d) W.-H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. 30 (2019) 2259-2262;
      (e) Z. Cao, Q. Zhu, Y.W. Lin, W.M. He, Chin. Chem. Lett. 30 (2019) 2132-2138;
      (f) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30 (2019) 2287-2290;
      (g) Z. Wang, W.M. He, Chin. J. Org. Chem. 39 (2019) 3594-3595;
      (h) Q.W. Gui, X. He, W. Wang, et al., Green Chem. 22 (2020) 118-122;
      (j) S. Peng, Y.W. Lin, W.M. He, Chin. J. Org. Chem. 40 (2020) 541-542;
      (i) S. Peng, D. Hu, J.L. Hu, et al., Adv. Synth. Catal. 361 (2019) 5721-5726.

    12. [12]

      (a) S. Mahajan, B. Sharma, K.K. Kapoor, Tetrahedron Lett. 56 (2015) 1915-1918;
      (b) O. Ravi, A. Shaikh, A. Upare, K.K. Singarapu, S.R. Bathula, J. Org. Chem. 82 (2017) 4422-4428;
      (c) G.C. Senadi, M.R. Mutra, T.Y. Lu, J.J. Wang, Green Chem. 19 (2017) 4272-4277;
      (d) R. Bashary, G.L. Khatik, Bioorg. Chem. 82 (2019) 156-162.

    13. [13]

      (a) G.R. Buettner, Free Radical Biol. Med. 3(1987) 259-303;
      (b) J. Van Der Zee, D.P. Barr, R.P. Mason, Free Radical Biol. Med. 20 (1996) 199-206.

    14. [14]

      (a) M.M. Hossain, S.G. Shyu, Tetrahedron 70(2014) 251-255;
      (b) K.J. Liu, S. Jiang, L.H. Lu, et al., Green Chem. 20 (2018) 3038-3043.

  • 加载中
    1. [1]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    2. [2]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    3. [3]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    4. [4]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    5. [5]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    6. [6]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    7. [7]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    8. [8]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    11. [11]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    12. [12]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    13. [13]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    14. [14]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    15. [15]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    16. [16]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    17. [17]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    18. [18]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    19. [19]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    20. [20]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

Metrics
  • PDF Downloads(4)
  • Abstract views(890)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return