Energetic materials based on poly furazan and furoxan structures
-
* Corresponding author.
E-mail address: wbz600@163.com (B.Wang).
Citation:
Zhang Junlin, Zhou Jing, Bi Fuqiang, Wang Bozhou. Energetic materials based on poly furazan and furoxan structures[J]. Chinese Chemical Letters,
;2020, 31(9): 2375-2394.
doi:
10.1016/j.cclet.2020.01.026
T.M. Klapötke, Chemistry of High-energy Materials, Walter de Gruyter GmbH & Co KG, Berlin, Germany, 2017.
P.C. Wang, Y.G. Xu, Q.H. Lin, M. Lu, Chem. Soc. Rev. 47 (2018) 7522-7538.
doi: 10.1039/C8CS00372F
Q.H. Zhang, J.M. Shreeve, Chem. Rev. 114 (2014) 10527-10574.
doi: 10.1021/cr500364t
J.P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, John Wiley & Sons, Hoboken, United States, 2010.
H. Hahn, W. Hintze, H. Treumann, Propellants Explos. Pyrotech. 5 (2010) 129-134.
E. Salzano, A. Basco, Propellants Explos. Pyrotech. 37 (2012) 724-731.
doi: 10.1002/prep.201100050
T.W. Myers, J.A. Bjorgaard, K.E. Brown, et al., J. Am. Chem. Soc. 138 (2016) 4685-4692.
doi: 10.1021/jacs.6b02155
Y.T. Gao, L.M. Zhao, F.Q. Pang, et al., Chin. Chem. Lett. 27 (2016) 433-436.
doi: 10.1016/j.cclet.2015.12.008
M.S. Klenov, A.A. Guskov, O.V. Anikin, et al., Angew. Chem. Int. Ed. 55 (2016) 11472-11475.
doi: 10.1002/anie.201605611
G. Zhao, C.L. He, P. Yin, et al., J. Am. Chem. Soc. 140 (2018) 3560-3563.
doi: 10.1021/jacs.8b01260
B.S. Wang, X.J. Qi, W.Q. Zhang, et al., J. Mater. Chem. A 5 (2017) 20867-20873.
doi: 10.1039/C7TA05905A
Y. Wang, Y.J. Liu, S.W. Song, et al., Nat. Commun. 9 (2018) 1-11.
doi: 10.1038/s41467-017-02088-w
D.E. Chavez, D.A. Parrish, L. Mitchell, G.H. Imler, Angew. Chem. Int. Ed. 56 (2017) 3575-3578.
doi: 10.1002/anie.201612496
J. Zhou, L. Ding, F.Q. Zhao, B.Z. Wang, J.L. Zhang, Chin. Chem. Lett. 31 (2020) 554-558.
doi: 10.1016/j.cclet.2019.05.008
R.F. Wu, T.L. Zhang, X.J. Qiao, Chin. Chem. Lett. 21 (2010) 1007-1010.
doi: 10.1016/j.cclet.2010.02.006
C. Zhang, C.G. Sun, B.C. Hu, C.M. Yu, M. Lu, Science 55 (2017) 374-376.
Y.L. Liu, G. Zhao, Y.X. Tang, et al., J. Mater. Chem. A 7 (2019) 7875-7884.
doi: 10.1039/C9TA01717H
Y.G. Xu, Q. Wang, C. Shen, et al., Nature 549 (2017) 78-81.
doi: 10.1038/nature23662
G.Z. Zhao, C.L. He, D. Kumar, et al., Chem. Eng. J. 378 (2019) 122119.
O.S. Bushuyev, P. Brown, A. Maiti, et al., J. Am. Chem. Soc. 134 (2012) 1422-1425.
doi: 10.1021/ja209640k
S.H. Li, Y. Wang, C. Qi, et al., Angew. Chem. Int. Ed. 52 (2013) 14031-14035.
doi: 10.1002/anie.201307118
S.L. Chen, Z.R. Yang, B.J. Wang, et al., Sci. China Mater. 61 (2018) 1123-1128.
doi: 10.1007/s40843-017-9219-9
D.E. Chavez, D.A. Parrish, L. Mitchell, Angew. Chem. Int. Ed. 55 (2016) 8666-8669.
doi: 10.1002/anie.201604115
Y.N. Li, B.Z. Wang, Y.J. Shu, et al., Chin. Chem. Lett. 28 (2017) 117-120.
doi: 10.1016/j.cclet.2016.06.026
K.B. Landenberger, O. Bolton, A.J. Matzger, J. Am. Chem. Soc. 134 (2012) 1422-1425.
doi: 10.1021/ja209640k
M. Göbel, K. Karaghiosoff, T.M. Klapötke, D.G. Piercey, J. Stierstorfer, J. Am. Chem. Soc. 137 (2015) 5074-5079.
doi: 10.1021/jacs.5b00661
W.Q. Zhang, J.H. Zhang, M.C. Deng, et al., Nat. Commun. 8 (2017) 1-7.
doi: 10.1038/s41467-016-0009-6
A.A. Dippold, T.M. Klapötke, J. Am. Chem. Soc. 135 (2013) 9931-9938.
doi: 10.1021/ja404164j
J.C. Bennion, N. Chowdhury, J.W. Kampf, A.J. Matzger, Angew. Chem. Int. Ed. 55 (2016) 13118-13121.
doi: 10.1002/anie.201607130
E. Koch, V. Weiser, E. Roth, Angew. Chem. Int. Ed. 51 (2012) 10038-10040.
doi: 10.1002/anie.201204808
R.W. Millar, A.W. Arber, R.M. Endsor, J. Hamid, M.E. Colclough, J. Energy Mater. 29 (2011) 88-114.
doi: 10.1080/07370652.2010.484411
J.R. Burns, C. Ramshaw, Chem. Eng. Commun. 189 (2002) 1611-1628.
doi: 10.1080/00986440214585
R.M. Doherty, D.S. Watt, Propellants Explos. Pyrotech. 33 (2008) 4-13.
doi: 10.1002/prep.200800201
C. Gao, L. Yang, Y.Y. Zeng, et al., J. Phys. Chem. C 121 (2017) 17586-17594.
doi: 10.1021/acs.jpcc.7b04285
D.I.A. Millar, I.D.H. Oswald, C. Barry, et al., Chem. Commun. 46 (2010) 5662-5664.
doi: 10.1039/c0cc00368a
K.B. Landenberger, A.J. Matzger, Cryst. Growth Des. 12 (2012) 3603-3609.
doi: 10.1021/cg3004245
Y. Long, J. Chen, J. Phys. Chem. A 119 (2015) 4073-4082.
doi: 10.1021/jp509144v
D.X. Gao, J. Huang, X.H. Lin, et al., RSC Adv. 9 (2019) 5825-5833.
doi: 10.1039/C8RA10638J
T. Fei, P.H. Lv, Y.J. Liu, et al., Cryst. Growth Des. 19 (2019) 2779-2784.
doi: 10.1021/acs.cgd.8b01923
T. Sun, J.J. Xiao, Q. Liu, F. Zhao, H.M. Xiao, J. Mater. Chem. A 2 (2014) 13898-13904.
doi: 10.1039/C4TA01150C
J.C. Bennion, N. Chowdhury, J.W. Kampf, A.J. Matzger, Angew. Chem. Int. Ed. 55 (2016) 13118-13121.
doi: 10.1002/anie.201607130
J.J. Xu, S.S. Zheng, S.L. Huang, et al., Chem. Commun. 55 (2019) 909-912.
doi: 10.1039/C8CC07347C
T. Gołofit, P. Maksimowski, P. Szwarc, T. Cegłowski, J. Jefimczyk, Org. Process Res. Dev. 21 (2017) 987-991.
doi: 10.1021/acs.oprd.7b00101
M.X. Zhang, P.E. Eaton, R. Gilardi, Angew. Chem. Int. Ed. 39 (2000) 401-404.
doi: 10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P
J. Zhang, T.J. Hou, L. Zhang, J. Luo, Org. Lett. 20 (2018) 7172-7176.
doi: 10.1021/acs.orglett.8b03107
T.M. Klapötke, B. Krumm, F.X. Steemann, K.D. Umland, Z. Anorg. Allg. Chem. 636 (2010) 13-14.
A.K. Hussein, A. Elbeih, M. Jungova, S. Zeman, Propellants Explos. Pyrotech.43 (2018) 472-478.
doi: 10.1002/prep.201700194
M. Göbel, T.M. Klapötke, Adv. Funct. Mater. 19 (2009) 347-365.
doi: 10.1002/adfm.200801389
I.L. Dalinger, A.V. Kormanov, K.Yu. Suponitsky, N.V. Muravyev, A.B. Sheremetev, Chem. Asian J. 13 (2018) 1165-1172.
doi: 10.1002/asia.201800214
D. Kumar, G.H. Imler, D.A. Parrish, J.M. Shreeve, J. Mater. Chem. A 5 (2017) 10437-10441.
doi: 10.1039/C7TA02585H
W. Fu, B.J. Zhao, M. Zhang, et al., J. Mater. Chem. A 5 (2017) 5044-5054.
doi: 10.1039/C6TA08376E
Y.Y. Zhang, Y.N. Li, J.J. Hu, et al., Dalton Trans. 48 (2019) 1524-1529.
doi: 10.1039/C8DT04712J
P. Yin, Q.H. Zhang, J.H. Zhang, D.A. Parrish, J.M. Shreeve, J. Mater. Chem. A 1 (2013) 7500-7510.
doi: 10.1039/c3ta11356f
P. He, J.G. Zhang, X. Yin, et al., Chem. -Eur. J. 22 (2016) 7670-7685.
doi: 10.1002/chem.201600257
Y.G. Xu, C. Shen, Q.H. Lin, et al., J. Mater. Chem. A 4 (2016) 17791-17800.
doi: 10.1039/C6TA08831G
T.M. Klapötke, D.G. Piercey, Inorg. Chem. 50 (2011) 2732-2734.
doi: 10.1021/ic200071q
H.X. Gao, J.M. Shreeve, Chem. Rev. 111 (2011) 7377-7436.
doi: 10.1021/cr200039c
Z.J. Yu, E.R. Bernstein, J. Phys. Chem. A 117 (2013) 10889-10902.
R. Haiges, K.O. Christe, Inorg. Chem. 52 (2013) 7249-7260.
doi: 10.1021/ic400919n
N.V. Palysaeva, A.G. Gladyshkin, I.A. Vatsadze, et al., Org. Chem. Front. 6 (2019) 249-255.
doi: 10.1039/C8QO01173G
C.B. Jones, R. Haiges, T. Schroer, K.O. Christe, Angew. Chem. Int. Ed. 45 (2006) 4981-4984.
doi: 10.1002/anie.200600735
P. Yin, Q.H. Zhang, J.M. Shreeve, Acc. Chem. Res. 49 (2016) 4-16.
doi: 10.1021/acs.accounts.5b00477
D. Fischer, N. Fischer, T.M. Klapötke, D.G. Piercey, J. Stierstorfer, J. Mater. Chem. 22 (2012) 20418-20422.
doi: 10.1039/c2jm33646d
T.M. Klapötke, C.M. Sabaté, Chem. Mater. 20 (2008) 3629-3637.
doi: 10.1021/cm703657k
F.G. Li, Y.G. Bi, W.Y. Zhao, et al., Inorg. Chem. 54 (2015) 2050-2057.
doi: 10.1021/ic503021c
T.G. Witkowski, E. Sebastiao, B. Gabidullin, et al., ACS Appl. Energy Mater. 1 (2018) 589-593.
doi: 10.1021/acsaem.7b00138
E.F.C. Byrd, B.M. Rice, J. Phys. Chem. A 110 (2006) 1005-1013.
doi: 10.1021/jp0536192
O.V. Larionov, Heterocyclic N-Oxides, Springer International Publishing, 2017.
R.A. Olofson, J.S. Michelman, J. Am. Chem. Soc. 869 (1964) 1863-1865.
T. Pasinszki, B. Havasi, B. Hajgató, N.P.C. Westwood, J. Phys. Chem. A 113 (2009) 170-176.
A.K. Zelenin, M.L. Trudell, R.D. Gilardi, J. Heterocycl. Chem. 35 (1998) 151-155.
doi: 10.1002/jhet.5570350128
D. D. Fischer, T.M. Klapötke, J. Stierstorfer, Eur. J. Inorg. Chem. (2014) 5808-5811.
D. Fischer, T.M. Klapötke, M. Reymann, J. Stierstorfer, Chem. -Eur. J. 20 (2014) 6401-6411.
doi: 10.1002/chem.201400362
M.A. Epishina, A.S. Kulikov, N.N. Makhova, Russ. Chem. Bull. 57 (2008) 644-651.
doi: 10.1007/s11172-008-0101-0
A.B. Sheremetev, E.V. Mantseva, Mendeleev Commun. 6 (1996) 246-247.
doi: 10.1070/MC1996v006n06ABEH000745
N.A. Troitskaya-Markova, O.G. Vlasova, T.I. Godovikova, S.G. Zlotin, O.A. Rakitin, Mendeleev Commun. 27 (2017) 448-450.
doi: 10.1016/j.mencom.2017.09.005
L.L. Fershtat, A.A. Larin, M.A. Epishina, et al., Tetrahedron Lett. 57 (2016) 4268-4272.
doi: 10.1016/j.tetlet.2016.08.011
Y.X. Tang, C.L. He, L.A. Mitchell, D.A. Parrish, J.M. Shreeve, Chem. -Eur. J. 22 (2016) 11846-11853.
doi: 10.1002/chem.201602171
C.H. Xu, C.W. An, Y.N. He, et al., Propellants Explos. Pyrotech. 43 (2018) 754-758.
doi: 10.1002/prep.201800075
X. Li, B.L. Wang, Q.H. Lin, L.P. Chen, J. Energ. Mater. 34 (2016) 409-415.
doi: 10.1080/07370652.2015.1112447
C. An, X. Wen, J. Wang, B. Wu, Cent. Eur. J. Energy Mater. 13 (2016) 397-410.
doi: 10.22211/cejem/64992
V.P. Sinditskii, A.V. Burzhava, A.B. Sheremetev, N.S. Aleksandrova, Propellants Explos. Pyrotech. 37 (2012) 575-580.
doi: 10.1002/prep.201100095
R. Tsyshevsky, P. Pagoria, M.X. Zhang, et al., J. Phys. Chem. C 119 (2015) 3509-3521.
doi: 10.1021/jp5118008
Y. Zhang, C. Zhou, B.Z. Wang, et al., Propellants Explos. Pyrotech. 39 (2014) 809-814.
doi: 10.1002/prep.201400057
R. Duddu, J. Hoare, P. Sanchez, R. Damavarapu, D. Parrish, J. Heterocyclic Chem. 54 (2017) 3087-3092.
doi: 10.1002/jhet.2920
A.B. Sheremetev, E.A. Ivanova, N.P. Spiridonova, et al., J. Heterocyclic Chem. 42 (2005) 1237-1242.
doi: 10.1002/jhet.5570420634
H.F. Huang, Y.M. Shi, Y. Yu, J. Yang, Eur. J. Org. Chem. (2018) 113-119.
O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, N.I. Shlykova, M.E. Shagaeva, Russ. Chem. Bull. 60 (2011) 1703-1711.
doi: 10.1007/s11172-011-0254-0
O.A. Luk'yanov, Y.B. Salamonov, Y.T. Struchkov, Y.N. Burtsev, S.K. Viadimir, Mendeleev Commun. 2 (1992) 52-53.
doi: 10.1070/MC1992v002n02ABEH000127
O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, Russ. Chem. Bull. 61 (2012) 1783-1786.
doi: 10.1007/s11172-012-0245-9
O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, N.I. Shlykova, Russ. Chem. Bull. 61 (2012) 360-365.
doi: 10.1007/s11172-012-0050-5
O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, Russ. Chem. Bull. 64 (2015) 137-141.
doi: 10.1007/s11172-015-0832-7
Z. Xu, H.W. Yang, G.B. Cheng, New J. Chem. 40 (2016) 9936-9944.
doi: 10.1039/C6NJ02198K
A.B. Sheremetev, N.S. Aleksandrova, N.V. Palysaeva, et al., Chem. Eur. J. 19 (2013) 12446-12457.
doi: 10.1002/chem.201302126
M. Göbel, T.M. Klapötke, Adv. Funct. Mater. 19 (2009) 347-365.
doi: 10.1002/adfm.200801389
Q. Yu, H.W. Yang, X.H. Ju, C.X. Lu, G.B. Cheng, ChemistrySelect 2 (2017) 688-696.
doi: 10.1002/slct.201601656
I. Gospodinov, T. Hermann, T.M. Klapötke, J. Stierstorfer, Propellants Explos. Pyrotech. 43 (2018) 355-363.
doi: 10.1002/prep.201700289
T.K. Kim, J.H. Choe, B.W. Lee, K.H. Chung, Bull. Korean Chem. Soc. 33 (2012) 2765-2768.
doi: 10.5012/bkcs.2012.33.8.2765
A.I. Stepanov, V.S. Sannikov, D.V. Dashko, et al., Russ. Chem. Bull. Int. Ed. 65 (2016) 2063-2067.
doi: 10.1007/s11172-016-1553-2
D.E. Chavez, Energetic heterocyclic N-oxides, in: B. Maes, J. Cossy, S. Polanc (Eds.), Heterocyclic N-Oxides. Topics in Heterocyclic Chemistry, vol. 53, Springer, 2017.
Y.L. Liu, C.L. He, Y.X. Tang, et al., Dalton Trans. 47 (2018) 16558-16566.
doi: 10.1039/C8DT03616K
H. Wang, Q.H. Wang, W.B. Huang, Y.M. Luo, H.X. Wang, Chin. J. Energy Mater. 18 (2010) 435-438.
Y. Zhang, C. Zhou, B.Z. Wang, et al., Propellants Explos. Pyrotech. 39 (2014) 809-814.
doi: 10.1002/prep.201400057
A.A. Astrat'ev, A.I. Stepanov, V.S. Sannikov, D.V. Dashko, Russ. J. Org. Chem. 52 (2016) 1194-1202.
doi: 10.1134/S1070428016080170
Y.X. Tang, C.L. He, L.A. Mitchell, D.A. Parrish, J.M. Shreeve, Chem. -Eur. J. 22 (2016) 11846-11853.
doi: 10.1002/chem.201602171
Y.S. Zhou, B.Z. Wang, J.K. Li, et al., Acta Chim. Sin. 69 (2011) 1673-1680.
Y.S. Zhou, Z.Z. Zhang, J.K. Li, et al., Chin. J. Explos. Propellants 28 (2005) 43-46.
(a) P. Pagoria, M.X. Zhang, A. Racoveanu, et al., Molbank M824 (2014) 1-4;
(b) R. Tsyshevsky, P. Pagoria, M.X. Zhang, et al., J. Phys. Chem. C 121 (2017) 23853-23864.
D.H. Liang, B.H. Cui, Q.H. Yi, et al., Chin. J. Expl. Propell. 38 (2015) 13-17.
I.J. Dagley, R.J. Spear, Organic Energetic Compounds, Nova Science Publishers Inc., New York, 1996, pp. 135.
A.I. Stepanov, D.V. Dashko, A.A. Astrat'ev, Cent. Eur. J. Energy Mater. 9 (2012) 329-342.
A.I. Stepanov, A.A. Astrat'ev, D.V. Dashko, et al., Russ. Chem. Bull. 61 (2012) 1024-1040.
doi: 10.1007/s11172-012-0132-4
Y.S. Zhou, B.Z. Wang, C. Zhou, et al., Chin. J. Org. Chem. 30 (2010) 1044-1050.
L.J. Zhai, F.Q. Bi, Y.F. Luo, et al., Sci. Rep. 9 (2019) 1-8.
doi: 10.1038/s41598-018-37186-2
C.L. He, H.X. Gao, G.H. Imler, D.A. Parrish, J.M. Shreeve, J. Mater. Chem. A 6 (2018) 9391-9396.
doi: 10.1039/C8TA02274G
S. Vincent, C. Mioskowski, L. Lebeau, J. Org. Chem. 64 (1999) 991-997.
doi: 10.1021/jo980099g
J.P. Agrawal, R.B. Mehilal, P.D. Salunke, Shinde, Propellants Explos. Pyrotech. 28 (2003) 77-82.
doi: 10.1002/prep.200390012
N. Wang, B.R. Chen, Y.X. Ou, J. Energy Mater. 11 (1993) 47-50.
doi: 10.1080/07370659308018638
J.H. Boyer, G. Eck, E.D. Stevens, G. Subramanian, M.L. Trudell, J. Org. Chem. 61 (1996) 5801-5803.
doi: 10.1021/jo9608836
A.B. Sheremeteva, N.S. Aleksandrovaa, N.V. Ignat'ev, M. Schulteb, Mendeleev Commun. 22 (2012) 95-97.
doi: 10.1016/j.mencom.2012.03.015
I.Z. Kondyukov, Y.V. Karpychev, P.G. Belyaev, et al., Russ. J. Organ. Chem. 43 (2007) 635-636.
doi: 10.1134/S107042800704029X
C.C. Miao, C.B. Liu, X.J. Feng, et al., Chem. Propell. Polym. Mater. 10 (2012) 34-42.
B.Z. Wang, H. Li, Y.N. Li, P. Lian, Y.S. Zhou, X.J. Wang, Chin. J. Energy Mater. 20 (2012) 385-390.
A.B. Sheremetev, O.V. Kharitonova, T.M. Mel'nikova, T.S. Novikova, V.S. Kuz'min, L.I. Khmel'nitskii, Mendeleev Commun. 6 (1996) 141-143.
doi: 10.1070/MC1996v006n04ABEH000618
X.J. Wang, P. Lian, Z.X. Ge, et al., Acta Chim. Sinica 68 (2010) 557-563.
X.N. Qu, S. Zhang, B.Z. Wang, et al., Dalton Trans. 45 (2016) 6968-6973.
doi: 10.1039/C6DT00218H
X. Li, X.Y. Liu, S. Zhang, et al., J. Chem. Eng. Data 61 (2016) 207-212.
doi: 10.1021/acs.jced.5b00458
A.B. Sheremetev, E.V. Mantseva, D.E. Dmitriev, F.S. Sirovskii, Russ. Chem. Bull. Int. Ed. 51 (2002) 659-662.
doi: 10.1023/A:1015820318686
L.J. Zhai, B.Z. Wang, K.Z. Xu, et al., J. Energ. Mater. 34 (2016) 92-102.
doi: 10.1080/07370652.2014.1001917
A.B. Sheremetev, V.O. Kulagina, N.S. Aleksandrova, et al., Propellants Explos. Pyrotech. 23 (1998) 142-149.
doi: 10.1002/(SICI)1521-4087(199806)23:3<142::AID-PREP142>3.0.CO;2-X
R. Haiges, K.O. Christe, Dalton Trans. 44 (2015) 10166-10176.
doi: 10.1039/C5DT00291E
I.L. Dalinger, A.V. Kormanov, K.Y. Suponitsky, N.V. Muravyev, A.B. Sheremetev, Chem. Asian J. 13 (2018) 1165-1172.
doi: 10.1002/asia.201800214
G.B. Chabot, S.M. Kaplan, P. Deokar, et al., Chem. Eur. J. 23 (2017) 13087-13099.
doi: 10.1002/chem.201701690
H. Li, F.Q. Zhao, H.X. Gao, et al., Inorganica Chim. Acta 423 (2014) 256-262.
L.J. Zhai, X.Z. Fan, B.Z. Wang, et al., RSC Adv. 5 (2015) 57833-57841.
doi: 10.1039/C5RA09822J
V.V. Parakhin, O.A. Luk'yanov, Russ. Chem. Bull. 62 (2013) 2007-2011.
doi: 10.1007/s11172-013-0291-y
A.B. Sheremetev, S.E. Semenov, V.S. Kuzmin, Y.A. Strelenko, S.L. Ioffe, Chem. Eur. J. 4 (1998) 1023-1026.
doi: 10.1002/(SICI)1521-3765(19980615)4:6<1023::AID-CHEM1023>3.0.CO;2-R
I.V. Tselinskii, S.F. Mel'nikova, T.V. Romanova, et al., Russ. J. Org. Chem. 33 (1997) 1656-1665.
W. Li, J.J. Tian, X.J. Qi, et al., ChemistrySelect 3 (2018) 849-854.
doi: 10.1002/slct.201702678
I.B. Starchenkov, V.G. Andrianov, Chem. Heterocycl. Compd. 32 (1996) 618.
doi: 10.1007/BF01164797
W. Li, K.C. Wang, X.J. Qi, Y.H. Jin, Q.H. Zhang, Cryst. Growth Des. 18 (2018) 1896-1902.
doi: 10.1021/acs.cgd.8b00053
A. Gunasekaran, J.H. Boyer, Heteroatom Chem. 4 (1993) 521-524.
doi: 10.1002/hc.520040519
Y.G. Zhang, B.Z. Wang, Q. Liu, Y.S. Zhou, X.J. Wang, Chin. J. Energy Mater. 18 (2010) 383-386.
L. Türker, Def. Technol. 12 (2016) 1-15.
doi: 10.1016/j.dt.2015.11.002
Y.Y. Qu, S.P. Babailov, J. Mater. Chem. A 6 (2018) 1915-1940.
doi: 10.1039/C7TA09593G
Y.F. Chen, J. Chen, L.J. Lin, G.J. Chuang, J. Org. Chem. 82 (2017) 11620-11630.
doi: 10.1021/acs.joc.7b01883
A.A. John, Q. Lin, J. Org. Chem. 82 (2017) 9873-9876.
doi: 10.1021/acs.joc.7b01530
Y. Takeda, S. Okumura, S. Minakata, Synthesis 45 (2013) 1029-1033.
doi: 10.1055/s-0032-1318388
D. Chavez, L. Hill, M. Hiskey, S. Kinkead, J. Energy Mater. 18 (2000) 219-236.
doi: 10.1080/07370650008216121
T.S. Hermann, T.M. Klapötke, B. Krumm, J. Stierstorfer, J. Heterocyclic Chem. 55 (2018) 852-862.
doi: 10.1002/jhet.3109
J.H. Zhang, J.M. Shreeve, J. Phys. Chem. C 119 (2015) 12887-12895.
J.H. Zhang, J.M. Shreeve, J. Am. Chem. Soc. 136 (2014) 4437-4445.
doi: 10.1021/ja501176q
T.S. Novikova, T.M. Mel'nikova, O.V. Kharitonova, et al., Mendeleev Commun. 4 (1994) 138-140.
doi: 10.1070/MC1994v004n04ABEH000386
G.S. Lee, A.R. Mitchell, P.F. Pagoria, R.D. Schmidt, J. Heterocycl. Chem. 38 (2001) 1227-1230.
doi: 10.1002/jhet.5570380533
R.D. Gilardi, M.L. Trudell, A.K. Zelinin, J. Heterocycl. Chem. 35 (1998) 151-155.
doi: 10.1002/jhet.5570350128
L.V. Batog, L.S. Konstantinova, A.S. Kulikov, N.N. Makhova, Russ. Chem. Bull. Int. Ed. 62 (2013) 1388-1390.
doi: 10.1007/s11172-013-0198-7
H.Z. Li, X.Q. Zhou, J.S. Li, M. Huang, Chin. J. Org. Chem. 28 (2008) 1646-1648.
D. Fischer, T.M. Klapötke, M. Reymann, J. Stierstorfer, Chem. -Eur. J. 20 (2014) 6401-6411.
doi: 10.1002/chem.201400362
J.X. He, Y.H. Lu, Q. Lei, Y.L. Cao, Chin. J. Explos. Propellants 34 (2011) 9-12.
A.N. Binnikov, A.S. Kulikov, N.N. Makhov, I.V. Orchinnikov, T.S. Pivina, 30th-58/10.
Y.J. Liu, J.H. Zhang, K.C. Wang, et al., Angew. Chem. Int. Ed. 55 (2016) 11548-11551.
doi: 10.1002/anie.201606378
H. Li, B.Z. Wang, X.Z. Li, et al., Bull. Korean Chem. Soc. 34 (2013) 686-688.
doi: 10.5012/bkcs.2013.34.2.686
O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, Russ. Chem. Bull. Int. Ed. 61 (2012) 1783-1786.
doi: 10.1007/s11172-012-0245-9
J.R. Zhang, F.Q. Bi, P. Lian, J.L. Zhang, B.Z. Wang, Chin. J. Org. Chem. 37 (2017) 2736-2744.
O.A. Luk'yanov, G.V. Pokhvisneva, T.V. Ternikova, Russ. Chem. Bull. Int. Ed. 64 (2015) 83-86.
doi: 10.1007/s11172-015-0824-7
Q. Yu, Z.X. Wang, H.W. Yang, et al., RSC Adv. 5 (2015) 27305-27312.
doi: 10.1039/C5RA03230J
V.P. Zelenov, A.A. Lobanova, S.V. Sysolyatin, N.V. Sevodina, Russ. J. Organ. Chem. 49 (2013) 455-465.
doi: 10.1134/S107042801303024X
W. Wei, Z.X. Li, W.J. Wang, Chin. J. Energy Mater. 17 (2009) 11-13.
Z.X. Li, S.Q. Tang, W.J. Wang, Chin. J. Energy Mater. 15 (2007) 6-8.
V.A. Emana, M.S. Sukhanova, O.V. Lebedeva, et al., Mendeleev Commun. 7 (1997) 5-7.
doi: 10.1070/MC1997v007n01ABEH000672
Y. Qu, Q. Zeng, J. Wang, et al., Chem. Eur. J. 22 (2016) 12527-12532.
doi: 10.1002/chem.201601901
Y.X. Tang, C.L. He, L.A. Mitchell, D.A. Parrish, J.M. Shreeve, Angew. Chem. Int. Ed. 55 (2016) 5565-5567.
doi: 10.1002/anie.201601432
R.E. Narsimha, G. Vaitheeswaran, J. Phys. Chem. C 123 (2019) 10034-10050.
doi: 10.1021/acs.jpcc.9b00448
C. Shen, Y. Liu, Z.Q. Zhu, Y.G. Xu, M. Lu, Chem. Commun. 53 (2017) 7489-7492.
doi: 10.1039/C7CC03869K
Y.X. Tang, H.X. Gao, G.H. Imler, D.A. Parrish, J.M. Shreeve, RSC Adv. 6 (2016) 91477-91482.
doi: 10.1039/C6RA22007J
L.L. Fershtata, M.A. Epishinaa, A.S. Kulikova, et al., Tetrahedron 71 (2015) 6764-6775.
doi: 10.1016/j.tet.2015.07.034
Y.F. Luo, L. Ma, B.Z. Wang, et al., Chin. J. Energy Mater. 18 (2010) 538-540.
A.S. Kulikov, I.V. Ovchinnikov, S.I. Molotov, N.N. Makhova, Russ. Chem. Bull. Int. Ed. 52 (2003) 1822-1828.
doi: 10.1023/A:1026073108494
Y.A.Qiu, W.J.Kong, J.Struwe, et al., Angew. Chem.Int.Ed. 57 (2018)5828-5832.
doi: 10.1002/anie.201803342
J. Barjau, G. Schnakenburg, S.R. Waldvogel, Angew. Chem. Int. Ed. 50 (2011) 1415-1419.
doi: 10.1002/anie.201006637
K.M. Waldie, K.R. Flajslik, E. McLoughlin, C.E. Chidsey, R.M. Waymouth, J. Am. Chem. Soc. 139 (2017) 738-748.
doi: 10.1021/jacs.6b09705
A.B. Sheremetev, B.V. Lyalin, A.M. Kozeev, et al., RSC Adv. 5 (2015) 37617-37625.
doi: 10.1039/C5RA05726D
D.E. Chavez, D.A. Parrish, P. Leonard, Synlett 23 (2012) 2126-2128.
doi: 10.1055/s-0032-1316704
X.J. Wang, P. Lian, B.Z. Wang, et al., Chin. J. Energy Mater. 23 (2015) 106-112.
T.S. Pivina, D.V. Sukhachev, A.V. Evtushenko, L.I. Khmelnitskii, Propellants Explos. Pyrotech. 20 (1995) 5-10.
doi: 10.1002/prep.19950200103
A.B. Sheremetev, E.V. Mantseva, 32th International Annual Conference of ICT, Karlsruhe, 2001, pp. 103.
Y.S. Zhou, B.Z. Wang, X.J. Wang, et al., Chin. J. Energ. Mater. 20 (2012) 137-138.
X.J. Wang, K.Z. Xu, Q. Sun, et al., Propellants Explos. Pyrotech. 40 (2015) 9-12.
doi: 10.1002/prep.201400148
L.J. Zhai, F.Q. Bi, H. Huo, et al., Front. Chem. 7 (2019) 559.
doi: 10.3389/fchem.2019.00559
A.I. Stepanov, D.V. Dashko, A.A. Astrat'ev, Cent. Eur. J. Energy Mater. 9 (2012) 329-342.
O.A. Luk'yanov, V.V. Parakhin, Russ. Chem. Bull. Int. Ed. 61 (2012) 1582-1590.
doi: 10.1007/s11172-012-0210-7
J.H. Zhang, S. Dharavath, L.A. Mitchell, D.A. Parrishd, J.M. Shreeve, J. Mater. Chem. A 4 (2016) 16961-16967.
doi: 10.1039/C6TA08055C
A.O. Finogenov, M.A. Epishina, A.S. Kulikov, et al., Russ. Chem. Bull. Int. Ed. 59 (2010) 2108-2113.
doi: 10.1007/s11172-010-0363-1
A.B. Sheremetev, V.O. Kulagina, I.L. Yudin, N.E. Kuzmina, Mendeleev Commun. 11 (2001) 112-114.
doi: 10.1070/MC2001v011n03ABEH001424
A.B. Sheremetev, V.L. Korolev, A.A. Potemkin, et al., Asian J. Org. Chem. 5 (2016) 1388-1397.
doi: 10.1002/ajoc.201600386
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Zhenzhong MEI , Hongyu WANG , Xiuqi KANG , Yongliang SHAO , Jinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Saadullah Khattak , Hong-Tao Xu , Jianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903