Citation: Huang Cheng-Mi, Li Jian, Wang Shun-Yi, Ji Shun-Jun. TFA promoted multi-component reaction of aryldiazonium with sodium metabisulphite and thiols: Construction of thiosulfonate under transition-metal free conditions[J]. Chinese Chemical Letters, ;2020, 31(7): 1923-1926. doi: 10.1016/j.cclet.2019.12.032 shu

TFA promoted multi-component reaction of aryldiazonium with sodium metabisulphite and thiols: Construction of thiosulfonate under transition-metal free conditions

Figures(6)

  • A TFA promoted multi-component reaction of aryldiazonium with sodium metabisulphite and thiols to construct thiosulfonates under transition-metal free conditions is reported. The thiosulfonates were isolated in good yields with broad tolerance of functional group. Readily available inorganic Na2S2O5 was applied as the sulfur dioxide surrogate. This strategy features easily available substrates, mild reaction conditions and free transition-metal catalyst.
  • 加载中
    1. [1]

      (a) J.P. Weidner, S.S. Block, J. Med. Chem. 7(1964) 671-673;
      (b) S.S. Block, J.P. Weidner, Dev. Ind. Microbiol. 4(1963) 213-217;
      (c) N.S. Zefirov, N.V. Zyk, E.K. Beloglazkina, A.G. Kutateladze, Sulfur Rep. 14(1993) 223-240;
      (d) P. Natarajan, Tetrahedron Lett. 56(2015) 4131-4134.

    2. [2]

      (a) B.M. Trost, Chem. Rev. 78(1978) 363-382;
      (b) M.G. Ranasinghe, P.L. Fuchs, Synth. Commun. 18(1988) 227-230;
      (c) K. Fujiki, E. Yoshida, Synth. Commun. 29(1999) 3289-3294;
      (d) K. Fujiki, S. Akieda, H. Yasuda, Y. Sasaki, Synthesis 7(2001) 1035-1042;
      (e) S. Kim, S. Kim, N. Otsuka, I. Ryu, Angew. Chem. Int. Ed. 44(2005) 6183-6186;
      (f) V. Girijavallabhan, C. Alvarezand, F.G. Njoroge, J. Org. Chem. 76(2011) 6442-6446;
      (g) Z.H. Peng, X. Zheng, Y.J. Zhang, D.L. An, W.R. Dong, Green Chem. 20(2018) 1760-1764.

    3. [3]

      (a) L. Field, T.F. Parsons, J. Org. Chem. 30(1965) 657-659;
      (b) E. Block, J.O.' Connor, J. Am. Chem. Soc. 96(1974) 3921-3929;
      (c) Y. Wang, J.H. Espenson, J. Org. Chem. 65(2000) 104-107;
      (d) V. Nair, A. Augustine, Org. Lett. 5(2003) 543-544;
      (e) M.T. Cai, G.S. Lv, J.X. Chen, et al., Chem. Lett. 39(2010) 368-369;
      (f) S. Sobhani, S. Aryanejad, M.F. Maleki, Synlett (2011) 319-322;
      (g) M. Kirihara, S. Naito, Y. Ishizuka, H. Hanai, T. Noguchi, Tetrahedron Lett. 52(2011) 3086-3089;
      (h) K. Bahrami, M.M. Khodaei, D. Khaledian, Tetrahedron Lett. 53(2012) 354-358;
      (i) M. Kirihara, S. Naito, Y. Nishimura, Y. Ishizuka, et al., Tetrahedron 70(2014) 2464-2471;
      (j) T.X.T. Luu, T.T.T. Nguyen, T.N. Le, J. Spanget-Larsen, F. Duus, J. Sulfur. Chem. 36(2015) 340-350;
      (k) P.K. Shyam, Y.K. Kim, C. Lee, H.Y. Jang, Adv. Synth. Catal. 358(2016) 56-61.

    4. [4]

      (a) Y.L. Yang, B. Rajagopal, C.F. Liang, et al., Tetrahedron 69(2013) 2640-2646;
      (b) Y. Liu, Y. Zhang, Tetrahedron Lett. 44(2003) 4291-4294;
      (c) G. Kumaraswamy, R. Raju, V. Narayanarao, RSC Adv. 5(2015) 22718-22723.

    5. [5]

      M. Xia, Z.C. Chen, Synth. Commun. 27(1997) 1309.
       

    6. [6]

      (a) M.D. Bentley, I.B. Douglass, J.A. Lacadie, J. Org. Chem. 37(1972) 333-334;
      (b) T. Billard, B.R. Langlois, S. Large, et al., J. Org. Chem. 61(1996) 7545-7550;
      (c) K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokoyama, Synthesis 3(2002) 343-348;
      (d) G. Liang, M. Liu, et al., Chin. J. Chem. 30(2012) 1611-1616;
      (e) G. Liang, J. Chen, J. Chen, et al., Tetrahedron Lett. 53(2012) 6768-6770.

    7. [7]

      (a) N. Taniguchi, J. Org. Chem. 80(2015) 1764-1770;
      (b) G.Y. Zhang, S.S. Lv, A. Shoberu, J.P. Zou, J. Org. Chem. 82(2017) 9801-9807;
      (c) Z.H. Peng, X. Zheng, Y.J. Zhang, D.L. An, W.R. Dong, Green Chem. 20(2018) 1760-1764;
      (d) Q. Chen, Y.L. Huang, X.F. Wang, J.W. Wu, G.D. Yu, Org. Biomol. Chem. 16(2018) 1713-1719.

    8. [8]

      L. Cao, S.H. Luo, K. Jiang, et al., Org. Lett. 20(2018) 4754-4758.
       

    9. [9]

      (a) Z.Y. Mo, T.R. Swaroop, Z.F. Chen, et al., Green Chem. 20(2018) 4428-4432;
      (b) X.F. Zhang, C. Cui, Y.H. Zhang, et al., Adv. Synth. Catal. 361(2019) 2014-2019.

    10. [10]

      (a) M. Luo, X.H. Zhang, D. Darensbourg, Acc. Chem. Res. 49(2016) 2209-2219;
      (b) G. Adaros, H.J. Weigel, H.J. Jauger, New Phytol. 108(1988) 67-74.

    11. [11]

      B. Nguyen, E.J. Emmett, M.C. Willis, J. Am. Chem. Soc. 132(2010) 16372-16373.
       

    12. [12]

      (a) F.S. He, Y.Q. Wu, X.F. Li, H.G. Xia, J. Wu, Org. Chem. Front. 6(2019) 1873-1878;
      (b) X.F. Wang, M. Yang, W.L. Xie, X.N. Fan, Jie Wu, Chem. Commun. 55(2019) 6010-6013;
      (c) J. Zhang, W.L. Xie, S.Q. Ye, J. Wu, Org. Chem. Front. 6(2019) 1863-1867;
      (d) Y. Zong, Y.M. Lang, M. Yang, et al., Org. Lett. 21(2019) 1935-1938;
      (e) S.Q. Ye, D.Q. Zheng, J. Wu, G.Y.S. Qiu, Chem. Commun. 55(2019) 2214-2217;
      (f) X.F. Wang, H.Z. Li, G.Y.S. Qiu, J. Wu, Chem. Commun. 55(2019) 2062-2065;
      (g) D.Q. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 55(2016) 11925-11929;
      (h) F. Liu, J.Y. Wang, B. Jiang, et al., Angew. Chem. Int. Ed. 56(2017) 15570-15574;
      (i) K.D. Zhou, J. Zhang, G.Y.S. Qiu, J. Wu, Org. Lett. 21(2019) 275-278;
      (j) H.J. Chen, M.L. Liu, G.Y.S. Qiu, J. Wu, Adv. Synth. Catal. 361(2019) 146-150;
      (k) S. Ye, J. Wu, Chem. Commun. 48(2012) 7753-7755;
      (l) X.Y. Qin, L. He, J. Li, B. Jiang, et al., Chem. Commun. 55(2019) 3227-3230;
      (m) S. Liu, K. Chen, W.J. Hao, et al., J. Org. Chem. 84(2019) 1964-1971;
      (n) Z.J. Shen, Y.N. Wu, C.L. He, et al., Chem. Commun. 54(2018) 445-448;
      (o) T.H. Zhu, X.C. Zhang, K. Zhao, T.P. Loh, Org. Chem. Front. 6(2019) 94-98;
      (p) T.H. Zhu, X.C. Zhang, X.L. Cui, et al., Adv. Synth. Catal. 361(2019) 1-7.

    13. [13]

      (a) G. Li, Z. Gan, K. Kong, X. Dou, D. Yang, Adv. Synth. Catal. 361(2019) 1808-1814;
      (b) A.M. Nair, S. Kumar, L. Halder, C.M.R. Volla, Org. Biomol. Chem. 17(2019) 5897-5901.

    14. [14]

      (a) X.X. Gong, J.H. Chen, L.F. Lai, et al., Chem. Commun. 54(2018) 11172-11175;
      (b) H.T. Dang, V.T. Nguyen, V.D. Nguyen, H.D. Armana, O.V. Larionov, Org. Biomol. Chem. 16(2018) 3605-3609;
      (c) M. Wang, J.Y. Zhao, X.F. Jiang, ChemSusChem 12(2019) 3064-3068;
      (d) X.X. Gong, M.J. Wang, S.Q. Ye, J. Wu, Org. Lett. 21(2019) 1156-1160;
      (e) G.Y.S. Qiu, K.D. Zhou, J. Wu, Chem. Commun. 54(2018) 12561-12569;
      (f) M. Wang, Q.L. Fan, X.F. Jiang, Green Chem. 20(2018) 5469-5473.

    15. [15]

      (a) U.M.V. Basavanag, A. Dos Santos, L. El Kaim, R. Gamez Montano, L. Grimaud, Angew. Chem. Int. Ed. 52(2013) 7194-7197;
      (b) D. Koziakov, A.J.V. Wangelin, Org. Biomol. Chem. 15(2017) 6715-6719;
      (c) F.P. Crisostomo, T. Martin, R. Carrillo, Angew. Chem. Int. Ed. 53(2014) 2181-2185;
      (d) M. Hartmann, Y. Li, A. Studer, J. Am. Chem. Soc. 134(2012) 16516-16519;
      (e) R. Huisgen, L. Krause, Ann. Chem. 574(1951) 157-171;
      (f) D. Koziakov, G.J. Wu, A.J. von Wangelin, Org. Biomol. Chem. 16(2018) 4942-4953;
      (g) N. Naveen, S. Sengupta, S. Chandrasekaran, J. Org. Chem. 83(2018) 3562-3569;
      (h) S.L. Yi, M.C. Li, X.Q. Hu, W.M. Mo, Z.L. Shen, Chin. Chem. Lett. 27(2016) 1505-1508;
      (i) H.X. Xu, Q.C. Wang, Chin. Chem. Lett. 30(2019) 337-339;
      (j) K.B. Ouyang, W. Hao, W.X. Zhang, Z.F. Xi, Chem. Rev. 115(2015) 12045-12090;
      (k) Q.J. Wang, Y.J. Su, L.X. Li, H.M. Huang, Chem. Soc. Rev. 45(2016) 1257-1272;
      (l) D. Koziakov, A.J. von Wangelin, Org. Biomol. Chem. 15(2017) 6715-6719.

  • 加载中
    1. [1]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    2. [2]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    3. [3]

      Lei LiGuang YangTianbai XiongTingzhu DuanJia WangXin Wang . Metal-free click polymerization of thiols and chalcone-derived internal olefins in air to prepare functional clusteroluminescent polythioethers for dual-response fluorescent probe. Chinese Chemical Letters, 2025, 36(11): 111374-. doi: 10.1016/j.cclet.2025.111374

    4. [4]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    5. [5]

      Hefei YangLe-Cheng WangXiao-Feng Wu . Sustainable carbonylative transformation of alkyl iodides to amides via crosslinking of EDA and XAT. Chinese Chemical Letters, 2025, 36(9): 110843-. doi: 10.1016/j.cclet.2025.110843

    6. [6]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    7. [7]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    8. [8]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    9. [9]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    10. [10]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    11. [11]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    12. [12]

      Lingdan KongPingping HuangFeng YuanYue ZhangXiaoqian ShiKang HanKeke LiuQing XuWenjing ZhangTom LawsonXiaoru XiaYong LiuYuepeng Jin . A metal-free bionic nanozyme for efficient inhibition of cancer recurrence and metastasis following photothermal therapy. Chinese Chemical Letters, 2025, 36(9): 111030-. doi: 10.1016/j.cclet.2025.111030

    13. [13]

      Congxu WangXuan XieFeng QiuLei ZhuImran ShakirYuxi Xu . Recent advances in photocatalytic overall production of hydrogen peroxide from metal-free photocatalysts. Chinese Chemical Letters, 2026, 37(1): 111604-. doi: 10.1016/j.cclet.2025.111604

    14. [14]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    15. [15]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    16. [16]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    17. [17]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    18. [18]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    19. [19]

      Shengyi GongGuoqiang Feng . Visible light-triggered NIR ratiometric fluorescent metal-free CO-releasing molecule for self-monitoring of CO delivery and effective cancer therapy. Chinese Chemical Letters, 2025, 36(7): 110409-. doi: 10.1016/j.cclet.2024.110409

    20. [20]

      Man XuQianyi LiJingyao MaHao LiYunfei ZhuFan YuKuande WangTao ZhouQuanyou FengLinghai XieJinyi Lin . Wide bandgap steric carbazole-fluorene-nanogrid polymers via metal-free CN polymerization for deep-blue polymer light-emitting diodes. Chinese Chemical Letters, 2026, 37(1): 111551-. doi: 10.1016/j.cclet.2025.111551

Metrics
  • PDF Downloads(5)
  • Abstract views(1690)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return