Citation: Ou Wei, Zou Ru, Han Mengting, Yu Lei, Su Chenliang, Wei Ou, Ru Zou, Han Mengting, Yu Lei, Su Chenliang. Tailorable carbazolyl cyanobenzene-based photocatalysts for visible light-induced reduction of aryl halides[J]. Chinese Chemical Letters, ;2020, 31(7): 1899-1902. doi: 10.1016/j.cclet.2019.12.017 shu

Tailorable carbazolyl cyanobenzene-based photocatalysts for visible light-induced reduction of aryl halides

    *Corresponding authors.
    E-mail addresses: yulei@yzu.edu.cn (L. Yu), chmsuc@szu.edu.cn (C. Su).
    1 These authors contributed equally to this work .
  • Received Date: 6 November 2019
    Revised Date: 30 November 2019
    Accepted Date: 9 December 2019
    Available Online: 11 December 2019

Figures(5)

  • Herein, a series of carbazolyl cyanobenzene (CCB)-based organic photocatalysts with a broad range of photoredox capabilities were designed and synthesized, allowing precise control of the photocatalytic reactivity for the controllable reduction of aryl halides via a metal-free process. The screened-out CCB (5CzBN), a metal-free, low-cost, scalable and sustainable photocatalyst with both strong oxidative and reductive ability, exhibits superior performance for both dehalogenation and C-C bond-forming arylation reactions.
  • 加载中
    1. [1]

      (a) S. Sato, T. Morikawa, S. Saeki, T. Kajino, T. Motohiro, Angew. Chem. Int. Ed. 49(2010) 5101-5105;
      (b) A.D. Tjandra, J. Huang, Chin. Chem. Lett. 29(2018) 734-746;
      (c) C.A. Roberts, S.P. Phivilay, I.E. Wachs, Chin. Chem. Lett. 29(2018) 769-772;
      (d) X. Hu, S. Lu, J. Tian, et al., Appl. Catal. B 241(2019) 329-337;
      (e) Y. Li, Z. Yin, G. Ji, et al., Appl. Catal. B 246(2019) 12-20.

    2. [2]

      D.A. Nicewicz, D.W.C. MacMillan, Science 322(2008) 77-80.  doi: 10.1126/science.1161976

    3. [3]

      M.A. Ischay, M.E. Anzovino, J. Du, T.P. Yoon, J. Am. Chem. Soc. 130(2008) 12886-12887.  doi: 10.1021/ja805387f

    4. [4]

      J.M.R. Narayanam, J.W. Tucker, C.R.J. Stephenson, J. Am. Chem. Soc. 131(2009) 8756-8757.  doi: 10.1021/ja9033582

    5. [5]

      J. Liu, Q. Liu, H. Yi, et al., Angew. Chem. Int. Ed. 53(2014) 502-506.  doi: 10.1002/anie.201308614

    6. [6]

      (a) C.B. Liu, Z. Chen, C.L. Su, et al., Nat. Commun. 9(2018) 80-89;
      (b) C.L. Su, R. Tandiana, B.B. Tian, et al., ACS Catal. 6(2016) 3594-3599;
      (c) C.T. Qiu, Y.S. Xu, X. Fan, et al., Adv. Sci. 6(2019)1801403;
      (d) G. Zhang, W. Ou, J. Wang, et al., Appl. Catal. B 245(2019) 114-121;
      (e) W. Ou, G. Zhang, J. Wu, C.L. Su, ACS Catal. 9(2019) 5178-5183.

    7. [7]

      (a) N.A. Romero, D.A. Nicewicz, Chem. Rev. 116(2016) 10075-10166;
      (b) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31(2020) 67-70.

    8. [8]

      (a) T.Y. Shang, L.H. Lu, Z. Cao, et al., Chem. Commun. 55(2019) 5408-5420;
      (b) J. Luo, J. Zhang, ACS Catal. 6(2016) 873-877;
      (c) A.'. Gutierrez-Bonet, J.C. Tellis, J.K. Matsui, B.A. Vara, G.A. Molander, ACS Catal. 6(2016) 8004-8008;
      (d) N.R. Patel, C.B. Kelly, A.P. Siegenfeld, G.A. Molander, ACS Catal. 7(2017) 1766-1770;
      (e) H. Huang, X. Li, C. Yu, et al., Angew. Chem. Int. Ed. 56(2017) 1500-1505;
      (f) H. Huang, C. Yu, Y. Zhang, et al., J. Am. Chem. Soc. 139(2017) 9799-9802;
      (g) F. Wu, L. Wang, J. Chen, D.A. Nicewicz, Y. Huang, Angew. Chem. Int. Ed. 57(2018) 2174-2178;
      (h) J. Hou, A. Ee, H. Cao, et al., Angew. Chem. Int. Ed. 57(2018) 17220-17224;
      (i) C. Lévêque, L. Chenneberg, V. Corcé, C. Ollivier, L. Fensterbank, Chem. Commun. 52(2016) 9877-9880;
      (j) X. Tian, H. Sun, Q. Zhang, C. Adachi, Chin. Chem. Lett. 27(2016) 1445-1452;
      (k) W. Chen, F. Song, Chin. Chem. Lett. 30(2019) 1717-1730.

    9. [9]

      T. Bhaskar, T. Matsui, J. Kaneko, et al., Green Chem. 4(2002) 372-375.  doi: 10.1039/b203745a

    10. [10]

      (a) X.F. Li, M.D. Sevilla, L. Sanche, J. Am. Chem. Soc. 125(2003) 8916-8920;
      (b) R.L. Osborne, M.K. Coggins, J. Terner, J.H. Dawson, J. Am. Chem. Soc. 129(2007) 14838-14839.

    11. [11]

      (a) M.H. Lin, W.S. Tsai, L.Z. Lin, et al., J. Org. Chem. 76(2011) 8518-8523;
      (b) J. Risse, M.A. Fernandez-Zumel, Y. Cudre, K. Severin, Org. Lett. 14(2012) 3060-3063;
      (c) M. Neumeier, D. Sampedro, M. Majek, et al., Chem. Eur. J. 24(2018) 105-108.

    12. [12]

      D.Q. Yang, Z.Y. Wang, Y.H. Long, Advanced Organic Chemistry-Structure, Reaction and Mechanism, Chemical Industry Press, Beijing, 2012 p. 206.

    13. [13]

      (a) M.T. Buelow, A.J. Gellman, J. Am. Chem. Soc. 123(2001) 1440-1448;
      (b) N. Iranpoor, H. Firouzabadi, R. Azadi, J. Organomet. Chem. 695(2010) 887-890;
      (c) S. Sabater, J.A. Mata, E. Peris, Nat. Commun. 4(2013) 2553;
      (d) Á.F. Cañete, C.O. Salas, F.C. Zacconi, Molecules 18(2013) 398-407;
      (e) T. You, Z. Wang, J. Chen, Y. Xia, J. Org. Chem. 82(2017) 1340-1346.

    14. [14]

      (a) A.U. Meyer, T. Slanina, C.J. Yao, B. König, ACS Catal. 6(2016) 369-375;
      (b) J.D. Nguyen, E.M. DAmato, J.M.R. Narayanam, C.R.J. Stephenson, Nat. Chem. 4(2012) 854-859;
      (c) I. Ghosh, T. Ghosh, J.I. Bardagi, B. König, Science 346(2014) 725-728;
      (d) C.B. Liu, Z. Chen, C.L. Su, et al., Nat. Commun. 9(2018) 80;
      (e) T. Maji, A. Karmakar, O. Reiser, J. Org. Chem. 76(2011) 736-739;
      (f) M. Neumann, S. Füldner, B. König, K. Zeitler, Angew. Chem. Int. Ed. 50(2011) 951-954;
      (g) J.M.R. Narayanam, J.W. Tucker, C.R.J. Stephenson, J. Am. Chem. Soc. 131(2009) 8756-8757;
      (h) Y.Q. Ge, P.H. Diao, X. Chen, N.N. Zhang, G. Chen, Chin. Chem. Lett. 29(2018) 903-906;
      (i) S.O. Poelma, G.L. Burnett, E.H. Discekici, et al., J. Org. Chem. 81(2018) 7155-7160.

    15. [15]

      (a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492(2012) 234-240;
      (b) E. Speckmeier, T.G. Fischer, K. Zeitler, J. Am. Chem. Soc. 140(2018) 15353-15365.

    16. [16]

      (a) R.A. Rossi, A.B. Pierini, A.B. Peñéñory, Chem. Rev. 103(2003) 71-168;
      (b) G. Sun, S. Ren, X. Zhu, M. Huang, Y. Wan, Org. Lett. 18(2016) 544-547;
      (c) L. Zeng, T. Liu, C. He, et al., J. Am. Chem. Soc. 138(2016) 3958-3961.

    17. [17]

      (a) R. Zhou, J. Li, H.W. Cheo, et al., Chem. Sci. 10(2019) 7340-7344;
      (b) K. Chen, M.S. Cheung, Z. Lin, P. Li, Org. Chem. Front. 3(2016) 875-879;
      (c) S.M. Senaweera, A. Singh, J.D. Weaver, J. Am. Chem. Soc. 136(2014) 3002-3005;
      (d) U.K. Sharma, H.P.L. Gemoets, F. Schröder, T. Noel, E.V. Van der Eycken, ACS Catal. 7(2017) 3818-3823.

  • 加载中
    1. [1]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    2. [2]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    3. [3]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    4. [4]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    5. [5]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    6. [6]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    9. [9]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    10. [10]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    11. [11]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    12. [12]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    13. [13]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    14. [14]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    15. [15]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    16. [16]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    17. [17]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    18. [18]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    19. [19]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    20. [20]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

Metrics
  • PDF Downloads(9)
  • Abstract views(879)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return