A review on metal-organic frameworks for photoelectrocatalytic applications
-
* Corresponding author.
E-mail address: gxj530520@126.com (X. Guo).
1 These authors contributed equally to this work.
Citation:
Mu Feihu, Dai Benlin, Zhao Wei, Zhang Lili, Xu Jiming, Guo Xujing. A review on metal-organic frameworks for photoelectrocatalytic applications[J]. Chinese Chemical Letters,
;2020, 31(7): 1773-1781.
doi:
10.1016/j.cclet.2019.12.015
Y. Wang, H. Suzuki, J. Xie, et al., Chem. Rev. 118 (2018) 5201-5241.
doi: 10.1021/acs.chemrev.7b00286
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109-2125.
doi: 10.1039/C8CS00542G
W. Zhao, Y. Feng, H. Huang, et al., Appl. Catal. B 245 (2019) 448-458.
doi: 10.1016/j.apcatb.2019.01.001
M. Volokh, G. Peng, J. Barrio, M. Shalom, Angew. Chem. Int. Ed. 58 (2019) 6138-6151.
doi: 10.1002/anie.201806514
A. Naldoni, M. Altomare, G. Zoppellaro, et al., ACS Catal. 9 (2019) 345-364.
doi: 10.1021/acscatal.8b04068
J. Liang, Y.B. Huang, R. Cao, Coord. Chem. Rev. 378 (2019) 32-65.
doi: 10.1016/j.ccr.2017.11.013
Y. Zhao, Y. Zhao, R. Shi, et al., Adv. Mater. 31 (2019) 1806482.
doi: 10.1002/adma.201806482
F. Chen, H. Huang, L. Ye, et al., Adv. Funct. Mater. 28 (2018) 1804284.
doi: 10.1002/adfm.201804284
I. Roger, M.A. Shipman, M.D. Symes, Int. Rev. Chem. Eng. 1 (2017) 0003.
C. Ding, J. Shi, Z. Wang, C. Li, ACS Catal. 7 (2017) 675-688.
doi: 10.1021/acscatal.6b03107
H. Wang, Y. Liang, L. Liu, J. Hu, W. Cui, J. Hazard. Mater. 344 (2018) 369-380.
doi: 10.1016/j.jhazmat.2017.10.044
T. Yao, X. An, H. Han, J.Q. Chen, C. Li, Adv. Energy Mater. 8 (2018) 1800210.
doi: 10.1002/aenm.201800210
M. Faraji, M. Yousefi, S. Yousefzadeh, et al., Energy Environ. Sci. 12 (2019) 59-95.
doi: 10.1039/C8EE00886H
X. Cao, X. Zang, X. Zhou, M. Chen, Y. Ding, Chin. Chem. Lett. 29 (2018) 811-814.
doi: 10.1016/j.cclet.2017.12.010
W. Zhao, J. Li, B. Dai, et al., Chem. Eng. J. 369 (2019) 716-725.
doi: 10.1016/j.cej.2019.03.115
W. Zhao, X. Tu, X. Wang, et al., Chem. Eng. J. 361 (2019) 1173-1181.
doi: 10.1016/j.cej.2018.12.120
A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
doi: 10.1038/238037a0
Y. Feng, H. Cheng, J. Han, et al., Chin. Chem. Lett. 28 (2017) 2254-2258.
doi: 10.1016/j.cclet.2017.10.025
K.K. Paul, N. Sreekanth, R.K. Biroju, et al., J. Mater. Chem. A 6 (2018) 22681-22696.
doi: 10.1039/C8TA06783J
H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19 (2009) 5089-5121.
doi: 10.1039/b821991e
Y. Zhang, X. Xiong, Y. Han, et al., Chemosphere 88 (2012) 145-154.
doi: 10.1016/j.chemosphere.2012.03.020
T. Zhu, M.N. Chong, E.S. Chan, ChemSusChem 7 (2014) 2974-2997.
doi: 10.1002/cssc.201402089
M. Bonomo, D. Dini, F. Decker, Front. Chem. 6 (2018) 601.
doi: 10.3389/fchem.2018.00601
A. García, C. Fernandez-Blanco, J.R. Herance, J. Albero, H. García, J. Mater. Chem. A:Mater. Energy Sustain. 5 (2017) 16522-16536.
doi: 10.1039/C7TA04045H
J. Qiu, X. Zhang, Y. Feng, et al., Appl. Catal. B 231 (2018) 317-342.
doi: 10.1016/j.apcatb.2018.03.039
S. Wang, S. Hou, C. Wu, Y. Zhao, X. Ma, Chin. Chem. Lett. 30 (2019) 398-402.
doi: 10.1016/j.cclet.2018.06.021
Z. Han, W. Shi, P. Cheng, Chin. Chem. Lett. 29 (2018) 819-822.
doi: 10.1016/j.cclet.2017.09.050
W. Li, Prog. Mater. Sci. 100 (2019) 21-63.
doi: 10.1016/j.pmatsci.2018.09.003
Y. Yang, Z. Zeng, C. Zhang, et al., Chem. Eng. J. 349 (2018) 808-821.
doi: 10.1016/j.cej.2018.05.093
M. Ji, Z. Zhang, J. Xia, et al., Chin. Chem. Lett. 29 (2018) 805-810.
doi: 10.1016/j.cclet.2018.05.002
E. Zarei, R. Ojani, J. Solid State Electrochem. 21 (2016) 305-336.
H. Zhang, J. Li, Q. Tan, et al., Chem.-Eur. J. 24 (2018) 18137-18157.
doi: 10.1002/chem.201803083
H. Rao, L.C. Schmidt, J. Bonin, M. Robert, Nature 548 (2017) 74-77.
doi: 10.1038/nature23016
T. Ouyang, H.H. Huang, J.W. Wang, D.C. Zhong, T.B. Lu, Angew. Chem. Int. Ed. 56 (2017) 738-743.
doi: 10.1002/anie.201610607
N. Wu, Nanoscale 10 (2018) 2679-2696.
doi: 10.1039/C7NR08487K
M.Z. Iqbal, S. Siddique, Int. J. Hydrogen Energy 43 (2018) 21502-21523.
doi: 10.1016/j.ijhydene.2018.09.157
Z. Zeng, Y.B. Li, S. Chen, P. Chen, F.X. Xiao, J. Mater. Chem. A 6 (2018) 11154-11162.
doi: 10.1039/C8TA02802H
H. Song, Z. Sun, Y. Xu, et al., Sep. Purif. Technol. 228 (2019) 115764.
doi: 10.1016/j.seppur.2019.115764
H.C. Li, Y.J. Zhang, X. Hu, et al., Adv. Energy Mater. 8 (2018) 1702734.
doi: 10.1002/aenm.201702734
J. Wang, C. Xue, W. Yao, et al., Appl. Catal. B 250 (2019) 369-381.
doi: 10.1016/j.apcatb.2019.03.002
F.Z. Song, Q.L. Zhu, X. Yang, et al., Adv. Energy Mater. 8 (2018) 1770139.
doi: 10.1002/aenm.201870006
M. Ge, J. Cai, J. Iocozzia, et al., Int. J. Hydrogen Energy 42 (2017) 8418-8449.
doi: 10.1016/j.ijhydene.2016.12.052
Z. Wei, F. Liang, Y. Liu, et al., Appl. Catal. B 201 (2017) 600-606.
doi: 10.1016/j.apcatb.2016.09.003
J.W. Yoon, D.H. Kim, J.H. Kim, H.W. Jang, J.H. Lee, Appl. Catal. B 244 (2019) 511-518.
doi: 10.1016/j.apcatb.2018.11.057
R. Tang, R. Yin, S. Zhou, et al., J. Mater. Chem. A 5 (2017) 4962-4971.
doi: 10.1039/C6TA10511D
S. Kment, F. Riboni, S. Pausova, et al., Chem. Soc. Rev. 46 (2017) 3716-3769.
doi: 10.1039/C6CS00015K
R. Franking, L. Li, M.A. Lukowski, et al., Energy Environ. Sci. 6 (2013) 500-512.
doi: 10.1039/C2EE23837C
C.H. Li, C.L. Huang, X.F. Chuah, et al., Chem. Eng. J. 361 (2019) 660-670.
doi: 10.1016/j.cej.2018.12.097
M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Adv. Funct. Mater. 24 (2014) 580-586.
doi: 10.1002/adfm.201301889
M. Li, K. Chang, T. Wang, et al., J. Mater. Chem. A 3 (2015) 13731-13737.
doi: 10.1039/C5TA02901E
X. Li, S. Liu, K. Fan, et al., Adv. Energy Mater. 8 (2018) 1800101.
doi: 10.1002/aenm.201800101
J.C. Cardoso, S. Stulp, J.F. de Brito, et al., Appl. Catal. B 225 (2018) 563-573.
doi: 10.1016/j.apcatb.2017.12.013
L. Pan, T. Muhammad, L. Ma, et al., Appl. Catal. B 189 (2016) 181-191.
doi: 10.1016/j.apcatb.2016.02.066
M. Altaf, M. Sohail, M. Mansha, et al., ChemSusChem 11 (2018) 542-546.
doi: 10.1002/cssc.201702122
Y. Dou, J. Zhou, A. Zhou, J.R. Li, Z. Nie, J. Mater. Chem. A 5 (2017) 19491-19498.
doi: 10.1039/C7TA06443H
Q. Zhang, H. Wang, Y. Dong, et al., Sol. Energy 171 (2018) 388-396.
doi: 10.1016/j.solener.2018.06.086
Q. Shen, X. Huang, J. Liu, C. Guo, G. Zhao, Appl. Catal. B 201 (2017) 70-76.
doi: 10.1016/j.apcatb.2016.08.008
W. Zhang, R. Li, X. Zhao, et al., ChemSusChem 11 (2018) 2710-2716.
doi: 10.1002/cssc.201801162
S. Zhou, P. Yue, J. Huang, et al., Chem. Eng. J. 371 (2019) 885-892.
doi: 10.1016/j.cej.2019.04.124
R. Tang, S. Zhou, L. Zhang, L. Yin, Adv. Funct. Mater. 28 (2018) 1706154.
doi: 10.1002/adfm.201706154
R. Tang, S. Zhou, Z. Yuan, L. Yin, Adv. Funct. Mater. 27 (2017) 1701102.
doi: 10.1002/adfm.201701102
D. Cardenas-Morcoso, R. Ifraemov, M. García-Tecedor, et al., J. Mater. Chem. A 7 (2019) 11143-11149.
doi: 10.1039/C9TA01559K
Z. Jiao, J. Zheng, C. Feng, et al., ChemSusChem 9 (2016) 2824-2831.
doi: 10.1002/cssc.201600761
B. Zhang, G. Dong, L. Wang, et al., Catal. Sci. Technol. 7 (2017) 4971-4976.
doi: 10.1039/C7CY01765K
Y.J. Dong, J.F. Liao, Z.C. Kong, et al., Appl. Catal. B 237 (2018) 9-17.
doi: 10.1016/j.apcatb.2018.05.059
J. Cheng, X. Xuan, X. Yang, J. Zhou, K. Cen, RSC Adv. 8 (2018) 32296-32303.
doi: 10.1039/C8RA05964K
X. Deng, R. Li, S. Wu, et al., J. Am. Chem. Soc. 141 (2019) 10924-10929.
doi: 10.1021/jacs.9b06239
M.C. Das, S. Xiang, Z. Zhang, B. Chen, Angew. Chem. 50 (2011) 10510-10520.
doi: 10.1002/anie.201101534
G. Jia, L. Liu, L. Zhang, et al., Appl. Surf. Sci. 448 (2018) 254-260.
doi: 10.1016/j.apsusc.2018.04.102
Z. Peng, S.C. Abbas, J. Lv, et al., Int. J. Hydrogen Energy 44 (2019) 2446-2453.
doi: 10.1016/j.ijhydene.2018.12.064
J. Zhou, A. Zhou, L. Shu, et al., Appl. Catal. B 226 (2018) 421-428.
doi: 10.1016/j.apcatb.2017.12.065
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Zuyou Song , Yong Jiang , Qiao Gou , Yini Mao , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240