Metal-organic framework membranes: From synthesis to electrocatalytic applications
-
* Corresponding authors.
E-mail addresses: qikai@hust.edu.cn (K. Qi), byxia@hust.edu.cn (B.Y. Xia).
Citation:
Liu Xiaobang, Yue Ting, Qi Kai, Qiu Yubing, Xia Bao Yu, Guo Xingpeng. Metal-organic framework membranes: From synthesis to electrocatalytic applications[J]. Chinese Chemical Letters,
;2020, 31(9): 2189-2201.
doi:
10.1016/j.cclet.2019.12.009
H.C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112(2012) 673-674.
doi: 10.1021/cr300014x
H.C. Zhou, S. Kitagawa, Chem. Soc. Rev. 43(2014) 5415-5418.
doi: 10.1039/C4CS90059F
T. Simon-Yarza, A. Mielcarek, P. Couvreur, et al., Adv. Mater. 30(2018) e1707365.
doi: 10.1002/adma.201707365
A. Betard, R.A. Fischer, Chem. Rev. 112(2012) 1055-1083.
doi: 10.1021/cr200167v
S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 43(2014) 6116-6140.
doi: 10.1039/C4CS00159A
K. Lu, T. Aung, N. Guo, et al., Adv. Mater. 30(2018) e1707634.
doi: 10.1002/adma.201707634
Z. Liang, C. Qu, W. Guo, et al., Adv. Mater. 30(2018) e1702891.
doi: 10.1002/adma.201702891
S. Yuan, L. Feng, K. Wang, et al., Adv. Mater. 30(2018) e1704303.
doi: 10.1002/adma.201704303
P.Q. Liao, J.Q. Shen, J.P. Zhang, Coord. Chem. Rev. 373(2018) 22-48.
doi: 10.1016/j.ccr.2017.09.001
W. Cheng, X. Zhao, H. Su, et al., Nat. Energy 4(2019) 115-122.
doi: 10.1038/s41560-018-0308-8
F.Y. Yi, R. Zhang, H. Wang, et al., Small Methods 1(2017) 11.
S. Zhao, H. Yin, L. Du, et al., ACS Nano 8(2014) 12660-12668.
doi: 10.1021/nn505582e
L. Shang, H. Yu, X. Huang, et al., Adv. Mater. 28(2016) 1668-1674.
doi: 10.1002/adma.201505045
A. Mahmood, W. Guo, H. Tabassum, R. Zou, Adv. Energy Mater. 6(2016) 1600423.
doi: 10.1002/aenm.201600423
W. Wang, X. Xu, W. Zhou, Z. Shao, Adv. Sci. 4(2017) 1600371.
doi: 10.1002/advs.201600371
L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Adv. Mater. 30(2018) e1703663.
doi: 10.1002/adma.201703663
X. Ma, Y. Chai, P. Li, B. Wang, Acc. Chem. Res. 52(2019) 1461-1470.
A.U. Czaja, N. Trukhan, U. Muller, Chem. Soc. Rev. 38(2009) 1284-1293.
doi: 10.1039/b804680h
J.S. Qin, D.Y. Du, W. Guan, et al., J. Am. Chem. Soc. 137(2015) 7169-7177.
doi: 10.1021/jacs.5b02688
X. Lu, C. Zhao, Nat. Commun. 6(2015) 6616.
doi: 10.1038/ncomms7616
L. Wang, Y. Wu, R. Cao, et al., ACS Appl. Mater. Interfaces 8(2016) 16736-16743.
doi: 10.1021/acsami.6b05375
D. Ping, X. Feng, J. Zhang, et al., ChemElectroChem 4(2017) 3037-3041.
doi: 10.1002/celc.201700901
I. Hod, P. Deria, W. Bury, et al., Nat. Commun. 6(2015) 8304.
doi: 10.1038/ncomms9304
S. Roy, Z. Huang, A. Bhunia, et al., J. Am. Chem. Soc. 141(2019) 15942-15950.
doi: 10.1021/jacs.9b07084
P. De Luna, W. Liang, A. Mallick, et al., ACS Appl. Mater. Interfaces 10(2018) 31225-31232.
doi: 10.1021/acsami.8b04848
I. Hod, M.D. Sampson, P. Deria, et al., ACS Catal. 5(2015) 6302-6309.
doi: 10.1021/acscatal.5b01767
S.R. Ahrenholtz, C.C. Epley, A.J. Morris, J. Am. Chem. Soc. 136(2014) 2464-2472.
doi: 10.1021/ja410684q
Z.Y. Yeo, S.P. Chai, P.W. Zhu, A.R. Mohamed, RSC Adv. 4(2014) 54322-54334.
doi: 10.1039/C4RA08884K
O. Shekhah, J. Liu, R.A. Fischer, C. Woll, Chem. Soc. Rev. 40(2011) 1081-1106.
doi: 10.1039/c0cs00147c
Z. Kang, M. Xue, L. Fan, et al., Chem. Commun. 49(2013) 10569-10571.
doi: 10.1039/c3cc42376j
X. Liu, N.K. Demir, Z. Wu, K. Li, J. Am. Chem. Soc. 137(2015) 6999-7002.
doi: 10.1021/jacs.5b02276
Y.S. Li, H. Bux, A. Feldhoff, et al., Adv. Mater. 22(2010) 3322-3326.
doi: 10.1002/adma.201000857
H.T. Kwon, H.K. Jeong, A.S. Lee, et al., J. Am. Chem. Soc. 137(2015) 12304-12311.
doi: 10.1021/jacs.5b06730
R. Makiura, S. Motoyama, Y. Umemura, et al., Nat. Mater. 9(2010) 565-571.
doi: 10.1038/nmat2769
W.J. Li, M. Tu, R. Cao, R.A. Fischer, J. Mater. Chem. A 4(2016) 12356-12369.
doi: 10.1039/C6TA02118B
M. Jian, H. Liu, T. Williams, et al., Chem. Commun. 53(2017) 13161-13164.
doi: 10.1039/C7CC06988J
M. Zhao, Y. Huang, Y. Peng, et al., Chem. Soc. Rev. 47(2018) 6267-6295.
doi: 10.1039/C8CS00268A
B. Wang, M. Zhao, L. Li, et al., Natl. Sci. Rev. 7(2020) 46-52.
doi: 10.1093/nsr/nwz118
Y. Liu, Z. Ng, E.A. Khan, et al., Microporous Mesoporous Mater. 118(2009) 296-301.
doi: 10.1016/j.micromeso.2008.08.054
F. Cao, C. Zhang, Y. Xiao, et al., Ind. Eng. Chem. Res. 51(2012) 11274-11278.
doi: 10.1021/ie301445p
Y. Liu, E. Hu, E.A. Khan, Z. Lai, J. Membrane Sci. 353(2010) 36-40.
doi: 10.1016/j.memsci.2010.02.023
G. Hailing, Z. Guangshan, I.J. Hewitt, Q. Shilun, J. Am. Chem. Soc. 131(2009) 1646.
doi: 10.1021/ja8074874
A. Huang, Q. Liu, N. Wang, J. Caro, J. Mater. Chem. A 2(2014) 8246-8251.
doi: 10.1039/C4TA00299G
Q. Liu, N. Wang, J. Caro, A. Huang, J. Am. Chem. Soc. 135(2013) 17679-17682.
doi: 10.1021/ja4080562
Y. Zhu, K.M. Gupta, Q. Liu, et al., Desalination 385(2016) 75-82.
doi: 10.1016/j.desal.2016.02.005
C. Liu, A. Huang, New J. Chem. 42(2018) 2372-2375.
doi: 10.1039/C7NJ04373B
N. Wang, Y. Liu, Z. Qiao, et al., J. Mater. Chem. A 3(2015) 4722-4728.
doi: 10.1039/C4TA06763K
A. Huang, J. Caro, Angew. Chem. Int. Ed. 50(2011) 4979-4982.
doi: 10.1002/anie.201007861
H. Aisheng, D. Wei, C. Jürgen, J. Am. Chem. Soc. 132(2010) 15562.
doi: 10.1021/ja108774v
A. Huang, Q. Liu, N. Wang, J. Caro, Microporous Mesoporous Mater.192(2014) 18-22.
doi: 10.1016/j.micromeso.2013.09.025
A. Huang, N. Wang, C. Kong, J. Caro, Angew. Chem. Int. Ed. 51(2012) 10551-10555.
doi: 10.1002/anie.201204621
L. Wan, C. Zhou, K. Xu, et al., Microporous Mesoporous Mater. 252(2017) 207-213.
doi: 10.1016/j.micromeso.2017.06.025
Y. Liu, N. Wang, J.H. Pan, et al., J. Am. Chem. Soc. 136(2014) 14353-14356.
doi: 10.1021/ja507408s
R. Ranjan, M. Tsapatsis, Chem. Mater. 21(2009) 4920-4924.
doi: 10.1021/cm902032y
A. Ibrahim, Y.S. Lin, Ind. Eng. Chem. Res. 55(2016) 8652-8658.
doi: 10.1021/acs.iecr.6b01965
H. Guo, Y. Zhu, S. Qiu, et al., Adv. Mater. 22(2010) 4190-4192.
doi: 10.1002/adma.201000844
H.T. Kwon, H.K. Jeong, Chem. Commun. 49(2013) 3854-3856.
doi: 10.1039/c3cc41039k
Y. Yoo, Z. Lai, H.K. Jeong, Microporous Mesoporous Mater. 123(2009) 100-106.
doi: 10.1016/j.micromeso.2009.03.036
Y. Hu, X. Dong, J. Nan, et al., Chem. Commun. 47(2011) 737-739.
doi: 10.1039/C0CC03927F
S.R. Venna, M.A. Carreon, J. Am. Chem. Soc. 132(2010) 76-78.
doi: 10.1021/ja909263x
X. Ma, S. Peng, W. Li, et al., CrystEngComm 20(2018) 407-411.
doi: 10.1039/C7CE01922J
S.C. Hess, R.N. Grass, W.J. Stark, Chem. Mater. 28(2016) 6b02499.
S. Friebe, B. Geppert, F. Steinbach, J. Caro, ACS Appl. Mater. Interfaces 9(2017) 12878-12885.
doi: 10.1021/acsami.7b02105
E. Barankova, N. Pradeep, K.V. Peinemann, Chem. Commun. 49(2013) 9419-9421.
doi: 10.1039/c3cc45196h
Y.S. Li, F.Y. Liang, H. Bux, et al., Angew. Chem. Int. Ed. 49(2010) 548-551.
doi: 10.1002/anie.200905645
A. Knebel, S. Friebe, N.C. Bigall, et al., ACS. Appl. Mater. Interfaces 8(2016) 7536-7544.
doi: 10.1021/acsami.5b12541
J. Nan, X. Dong, W. Wang, W. Jin, Microporous Mesoporous Mater. 155(2012) 90-98.
doi: 10.1016/j.micromeso.2012.01.010
A. Kasik, X. Dong, Y.S. Lin, Microporous Mesoporous Mater. 204(2015) 99-105.
doi: 10.1016/j.micromeso.2014.10.050
J. Nan, X. Dong, W. Wang, et al., Langmuir 27(2011) 4309-4312.
doi: 10.1021/la200103w
O. Shekhah, L. Fu, R. Sougrat, et al., Chem. Commun. 48(2012) 11434-11436.
doi: 10.1039/c2cc36233c
D.J. Lee, Q. Li, H. Kim, K. Lee, Microporous Mesoporous Mater.163(2012) 169-177.
doi: 10.1016/j.micromeso.2012.07.008
U. Mueller, H. Puetter, M. Hesse, et al., J. Mater. Chem. 16(2006) 626-636.
doi: 10.1039/B511962F
I. Richter, M. Schubert, U. Müller, U.S. Patent, US 2009/0183996 A1, 2009.
A. Martinez Joaristi, J. Juan-Alcañiz, P. Serra-Crespo, et al., Cryst. Growth Des. 12(2012) 3489-3498.
doi: 10.1021/cg300552w
R. Ameloot, L. Stappers, J. Fransaer, et al., Chem. Mater. 21(2009) 2580-2582.
doi: 10.1021/cm900069f
T.R.C. Van Assche, G. Desmet, R. Ameloot, et al., Microporous Mesoporous Mater. 158(2012) 209-213.
doi: 10.1016/j.micromeso.2012.03.029
G. He, M. Dakhchoune, J. Zhao, et al., Adv. Func. Mater. 28(2018) 1707427.
doi: 10.1002/adfm.201707427
I. Hod, W. Bury, D.M. Karlin, et al., Adv. Mater. 26(2014) 6295-6300.
doi: 10.1002/adma.201401940
S. Zhou, Y. Wei, L. Zhuang, et al., J. Mater. Chem. A 5(2017) 1948-1951.
doi: 10.1039/C6TA09469D
Y. Peng, Y. Li, Y. Ban, et al., Science 346(2014) 1356.
doi: 10.1126/science.1254227
Y. Peng, Y. Li, Y. Ban, W. Yang, Angew. Chem. Int. Ed. 56(2017) 9757-9761.
doi: 10.1002/anie.201703959
X. Wang, C. Chi, K. Zhang, et al., Nat. Commun. 8(2017) 14460.
doi: 10.1038/ncomms14460
T. Rodenas, I. Luz, G. Prieto, et al., Nat. Mater. 14(2015) 48-55.
doi: 10.1038/nmat4113
M. Zhao, Y. Wang, Q. Ma, et al., Adv. Mater. 27(2015) 7372-7378.
doi: 10.1002/adma.201503648
R. Dong, M. Pfeffermann, H. Liang, et al., Angew. Chem. Int. Ed. 54(2015) 12058-12063.
doi: 10.1002/anie.201506048
H. Ang, L. Hong, ACS Appl. Mater. Inter. 9(2017) 28079-28088.
doi: 10.1021/acsami.7b08383
G. Xu, T. Yamada, K. Otsubo, et al., J. Am. Chem. Soc. 134(2012) 16524-16527.
doi: 10.1021/ja307953m
Y. Hu, J. Wei, Y. Liang, et al., Angew. Chem. Int. Ed. 55(2016) 2048-2052.
doi: 10.1002/anie.201509213
L. Zhuang, L. Ge, H. Liu, et al., Angew. Chem. Int. Ed. 131(2019) 13699-13706.
doi: 10.1002/ange.201907600
Y. Yan, H. Ting, Z. Bin, et al., J. Mater. Chem. A 6(2018) 15905-15926.
doi: 10.1039/C8TA05985C
X. Tian, X. Zhao, Y.Q. Su, et al., Science 366(2019) 850-856.
doi: 10.1126/science.aaw7493
S. Zhao, Y. Wang, J. Dong, et al., Nat. Energy 1(2016) 16184.
doi: 10.1038/nenergy.2016.184
E.M. Miner, T. Fukushima, D. Sheberla, et al., Nat. Commun. 7(2016) 10942.
doi: 10.1038/ncomms10942
M. Rafti, W.A. Marmisollé, O. Azzaroni, Adv. Mater. Inter. 3(2016) 1600047.
doi: 10.1002/admi.201600047
Z. Li, M. Shao, L. Zhou, et al., Adv. Mater. 28(2016) 2337-2344.
doi: 10.1002/adma.201505086
Z. Li, M. Shao, L. Zhou, et al., Nano Energy 25(2016) 100-109.
doi: 10.1016/j.nanoen.2016.04.041
W. Xia, R. Zou, L. An, et al., Energ. Environ. Sci. 8(2015) 568-576.
doi: 10.1039/C4EE02281E
W. Zhang, Z.Y. Wu, H.L. Jiang, et al., J. Am. Chem. Soc.136(2014) 14385-14388.
doi: 10.1021/ja5084128
L. Zhang, Z. Su, F. Jiang, et al., Nanoscale 6(2014) 6590-6602.
doi: 10.1039/C4NR00348A
T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 136(2014) 13925-13931.
doi: 10.1021/ja5082553
I.S. Amiinu, Z. Pu, X. Liu, et al., Adv. Func. Mater. 27(2017) 1702300.
doi: 10.1002/adfm.201702300
H. Xia, J. Zhang, Z. Yang, et al., Nanomicro Lett. 9(2017) 43.
L. Huang, X. Zhang, Y. Han, et al., J. Mater. Chem. A 5(2017) 18610-18617.
doi: 10.1039/C7TA05821G
M. Jahan, Q. Bao, K.P. Loh, J. Am. Chem. Soc. 134(2012) 6707-6713.
doi: 10.1021/ja211433h
X. Wang, J. Zhou, H. Fu, et al., J. Mater. Chem. A 2(2014) 14064-14070.
doi: 10.1039/C4TA01506A
J. Wei, Y. Hu, Y. Liang, et al., J. Mater. Chem. A 5(2017) 10182-10189.
doi: 10.1039/C7TA00276A
S. Liu, H. Zhang, Q. Zhao, et al., Carbon 106(2016) 74-83.
doi: 10.1016/j.carbon.2016.05.021
J. Wei, Y. Hu, Y. Liang, et al., Adv. Func. Mat. 25(2015) 5768-5777.
doi: 10.1002/adfm.201502311
H.X. Zhong, J. Wang, Y.W. Zhang, et al., Angew. Chem. Int. Ed. 53(2014) 14235-14239.
doi: 10.1002/anie.201408990
M. Jahan, Z. Liu, K.P. Loh, Advan. Func. Mat. 23(2013) 5363-5372.
doi: 10.1002/adfm.201300510
J. Wei, Y. Hu, Z. Wu, et al., J. Mater. Chem. A 3(2015) 16867-16873.
doi: 10.1039/C5TA04330A
M. Jiang, L. Li, D. Zhu, et al., J. Mater. Chem. A 2(2014) 5323-5329.
doi: 10.1039/C3TA15319C
C.W. Kung, J.E. Mondloch, T.C. Wang, et al., ACS Appl. Mater. Inter. 7(2015) 28223-28230.
doi: 10.1021/acsami.5b06901
G. Hai, X. Jia, K. Zhang, et al., Nano Energy 44(2018) 345-352.
doi: 10.1016/j.nanoen.2017.11.071
K. Rui, G. Zhao, Y. Chen, et al., Adv. Funct. Mater. 28(2018) 1801554.
doi: 10.1002/adfm.201801554
Q. Wang, Z. Liu, H. Zhao, et al., J. Mater. Chem. A 6(2018) 18720-18727.
doi: 10.1039/C8TA06491A
G. Cai, W. Zhang, L. Jiao, et al., Chemistry 2(2017) 791-802.
doi: 10.1016/j.chempr.2017.04.016
L. Jiao, Y.X. Zhou, H.L. Jiang, Chem. Sci. 7(2016) 1690-1695.
doi: 10.1039/C5SC04425A
A.J. Clough, J.W. Yoo, M.H. Mecklenburg, S.C. Marinescu, J. Am. Chem. Soc.137(2015) 118-121.
doi: 10.1021/ja5116937
R. Dong, Z. Zheng, D.C. Tranca, et al., Chem. 23(2017) 2255-2260.
doi: 10.1002/chem.201605337
J. Duan, S. Chen, C. Zhao, Nat. Commun. 8(2017) 15341.
doi: 10.1038/ncomms15341
C. Zhu, K. Wang, T. Lei, et al., Mater.Lett. 216(2018) 243-247.
doi: 10.1016/j.matlet.2018.01.123
X. Wang, W. Zhou, Y.P. Wu, et al., J. Alloy Compo. 753(2018) 228-233.
doi: 10.1016/j.jallcom.2018.04.220
D. Micheroni, G. Lan, W. Lin, J. Am. Chem. Soc. 140(2018) 15591-15595.
doi: 10.1021/jacs.8b09521
J.D. Shakun, P.U. Clark, F. He, et al., Nature 484(2012) 49-54.
doi: 10.1038/nature10915
L. Song, C.S. Diercks, Y.B. Zhang, et al., Science 349(2015) 1208-1213.
doi: 10.1126/science.aac8343
H. Rao, L.C. Schmidt, J. Bonin, M. Robert, Nature 548(2017) 74.
doi: 10.1038/nature23016
P.D. Luna, R. Quinterobermudez, C.T. Dinh, et al., Nat. Catalyst 1(2018) 103.
doi: 10.1038/s41929-017-0018-9
Y.R. Wang, Q. Huang, C.T. He, et al., Nat. Commun. 9(2018) 4466.
doi: 10.1038/s41467-018-06938-z
K. Sumida, D.L. Rogow, J.A. Mason, et al., Chem. Rev. 112(2012) 724-781.
doi: 10.1021/cr2003272
M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48(2019) 2783-2828.
doi: 10.1039/C8CS00829A
F.N. Al-Rowaili, A. Jamal, M.S. Ba Shammakh, A. Rana, ACS Sustain. Chem. Eng. 6(2018) 15895-15914.
doi: 10.1021/acssuschemeng.8b03843
R. Hinogami, S. Yotsuhashi, M. Deguchi, et al., ECS Electrochem. Lett.1(2012) H17-H19.
doi: 10.1149/2.001204eel
J.W. Maina, J.A. Schutz, L. Grundy, et al., ACS Appl. Mater. Inter. 9(2017) 35010-35017.
doi: 10.1021/acsami.7b11150
R.S. Kumar, S.S. Kumar, M.A. Kulandainathan, Electrochem. Commun. 25(2012) 70-73.
doi: 10.1016/j.elecom.2012.09.018
J. Bonin, A. Maurin, M. Robert, Coord. Chem. Rev. 334(2016) 184-198.
E.A. Mohamed, Z.N. Zahran, Y.C.C. Naruta, Chem. Commun. 51(2015) 16900-16903.
doi: 10.1039/C5CC04273A
B.X. Dong, S.L. Qian, F.Y. Bu, et al., ACS Appl. Energy Mater. 1(2018) 4662-4669.
doi: 10.1021/acsaem.8b00797
N. Kornienko, Y. Zhao, C.S. Kley, et al., J. Am. Chem. Soc. 137(2015) 14129-14135.
doi: 10.1021/jacs.5b08212
L. Ye, J. Liu, Y. Gao, et al., J. Mater. Chem. A 4(2016) 15320-15326.
doi: 10.1039/C6TA04801C
J.X. Wu, W.W. Yuan, M. Xu, Z.Y. Gu, Chem. Commun. 55(2019) 11634-11637.
doi: 10.1039/C9CC05487A
X. Kang, Q. Zhu, X. Sun, et al., Chem. Sci. 7(2016) 266-273.
doi: 10.1039/C5SC03291A
D. Feng, T. Lei, M.R. Lukatskaya, et al., Nat. Energy 3(2018) 30.
doi: 10.1038/s41560-017-0044-5
B. You, N. Jiang, M. Sheng, et al., ACS Catal. 5(2015) 7068-7076.
doi: 10.1021/acscatal.5b02325
L. Sun, T. Miyakai, S. Seki, M. Dinca, J. Am. Chem. Soc. 135(2013) 8185-8188.
doi: 10.1021/ja4037516
L. Sun, M.G. Campbell, M. Dinca, Angew. Chem. Int. Ed. 55(2016) 3566-3579.
doi: 10.1002/anie.201506219
A. Hu, Q. Pang, C. Tang, et al., J. Am. Chem. Soc. 141(2019) 11322-11327.
doi: 10.1021/jacs.9b05869
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Xi Feng , Ding-Yi Hu , Zi-Jun Liang , Mu-Yang Zhou , Zhi-Shuo Wang , Wen-Yu Su , Rui-Biao Lin , Dong-Dong Zhou , Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958