Citation: Wu Hao, Ma Nana, Song Mengxiao, Zhang Guisheng. Dimethyl sulfoxide-aided copper(0)-catalyzed intramolecular decarbonylative rearrangement of N-aryl isatins leading to acridones[J]. Chinese Chemical Letters, ;2020, 31(6): 1580-1583. doi: 10.1016/j.cclet.2019.10.043 shu

Dimethyl sulfoxide-aided copper(0)-catalyzed intramolecular decarbonylative rearrangement of N-aryl isatins leading to acridones

    * Corresponding authors.
    E-mail addresses: mann076@htu.edu.cn (N. Ma), zgs@htu.cn (G. Zhang).
  • Received Date: 25 September 2019
    Revised Date: 20 October 2019
    Accepted Date: 31 October 2019
    Available Online: 6 November 2019

Figures(4)

  • Described here is the first example of Cu(0)-catalyzed intramolecular decarbonylative rearrangements of readily available N-aryl isatins assisted by solvent dimethyl sulfoxide (DMSO) under air atmosphere and additive-free conditions leading to various biologically important acridones in good to excellent yields. This novel transformation is proposed to go through a sequential DMSO-aided Cu insertion into the amide C—N bond, CO extrusion, Cu migration, reductive elimination and DMSO-aided proton migration processes, involving multiple types of bond cleavage and formation in a single chemical step.
  • 加载中
    1. [1]

      (a) T. Kondo, Y. Taguchi, Y. Kaneko, M. Niimi, T. Mitsudo, Angew. Chem. Int. Ed. 43 (2004) 5369-5372;
      (b) P. Chen, T. Xu, G. Dong, Angew. Chem. Int. Ed. 53 (2014) 1674-1678;
      (c) T. Kondo, A. Nakamura, T. Okada, et al., J. Am. Chem. Soc. 122 (2000) 6319-6320;
      (d) M. Murakami, H. Amii, K. Shigeto, Y. Ito, J. Am. Chem. Soc. 118 (1996) 8285-8290;
      (e) R. Zeng, G. Dong, J. Am. Chem. Soc. 137 (2015) 1408-1411.

    2. [2]

      (a) W. Zhou, Y. Yang, Y. Liu, G.J. Deng, Green Chem. 15 (2013) 76-80;
      (b) J. Yu, H. Yang, Y. Jiang, H. Fu, Chem. -Eur. J. 19 (2013) 4271-4277.

    3. [3]

      H. Wu, Z. Zhang, Q. Liu, et al., Org. Lett. 20(2018) 2897-2901.  doi: 10.1021/acs.orglett.8b00957

    4. [4]

      (a) I.B. Taraporewala, J.W. Cessac, T.C. Chanh, A.V. Delgado, R.F. Schinazi, J. Med. Chem. 35 (1992) 2744-2752;
      (b) O. Tabarrini, G. Manfroni, A. Fravolini, et al., J. Med. Chem. 49 (2006) 2621-2617;
      (c) J.X. Kelly, M.J. Smilkstein, R. Brun, et al., Nature 459 (2009) 270-273.

    5. [5]

      T. Faller, K. Hutton, G. Okafo, et al., Chem. Commun. (1997) 1529-1530.  doi: 10.1039/A701787A

    6. [6]

      D. Zhang, X. Jiang, H. Yang, et al., Org. Biomol. Chem. 11(2013) 3375-3381.  doi: 10.1039/c3ob27500k

    7. [7]

      (a) X. Ye, P.N. Plessow, M.K. Brinks, et al., J. Am. Chem. Soc. 136 (2014) 5923-5929;
      (b) L.A. Graham, J. Suryadi, T.K. West, G.L. Kucera, U. Bierbach, J. Med. Chem. 55 (2012) 7817-7827.

    8. [8]

      S.L. MacNeil, B.J. Wilson, V. Snieckus, Org. Lett. 8(2006) 1133-1136.  doi: 10.1021/ol053162e

    9. [9]

      J. Wen, S. Tang, F. Zhang, R. Shi, A. Lei, Org. Lett. 19(2017) 94-97.  doi: 10.1021/acs.orglett.6b03356

    10. [10]

      (a) W. Zhou, Y. Liu, Y. Yang, G.J. Deng, Chem. Commun. 48 (2012) 10678-10680;
      (b) P.C. Huang, K. Parthasarathy, C.H. Cheng, Chem. -Eur. J. 19 (2013) 460-464.

    11. [11]

      (a) J. Zhao, R.C. Larock, J. Org. Chem. 72 (2007) 583-588;
      (b) X. Pang, Z. Lou, M. Li, L. Wen, C. Chen, Eur. J. Org. Chem. 15 (2015) 3361-3369.

    12. [12]

      (a) Y. Koguchi, J. Kohno, M. Nishio, et al., J. Antibiot. 53 (2000) 105;
      (b) M. Somei, F. Yamada, Nat. Prod. Rep. 20 (2003) 216-242;
      (c) C. Jing, T. Shi, D. Xing, X. Guo, W.H. Hu, Green Chem. 15 (2013) 620-624;
      (d) E.C. Elliott, E.R. Bowkett, J.L. Maggs, et al., Org. Lett. 20 (2011) 5592-5596;
      (e) P. Wu, H. Gao, J. Sun, C.G. Yan, Chin. Chem. Lett. 28 (2017) 329-322;
      (f) K. Stratmann, R.E. Moore, R. Bonjouklian, et al., J. Am. Chem. Soc. 116 (1994) 9935-9942;
      (g) J.L. Jimenez, U. Huber, R.E. Moore, G.M.L. Patterson, J. Nat. Prod. 62 (1999) 569-572;
      (h) H.B. Rasmussen, J.K. Macleod, J. Nat. Prod. 60 (1997) 1152-1154;
      (i) T. Tokunaga, W.E. Hume, T. Umezome, et al., J. Med. Chem. 44 (2001) 4641-4649;
      (j) Z. Xu, S. Zhang, C. Gao, et al., Chin. Chem. Lett. 28 (2017) 159-167;
      (k) R. Shintani, M. Inoue, T. Hayashi, Angew. Chem. Int. Ed. 45 (2006) 3353-3356;
      (l) R. Zeng, G. Dong, J. Am. Chem. Soc. 137 (2015) 1408-1411;
      (m) K. Meena, S. Kumari, J.M. Khurana, et al., Chin. Chem. Lett. 28 (2017) 136-142;
      (n) R.G. Shi, C.G. Yan, Chin. Chem. Lett. 27 (2016) 575-578.

    13. [13]

      (a) T. Liu, H. Yang, Y. Jiang, H. Fu, Adv. Synth. Catal. 355 (2013) 1169-1176;
      (b) G.C. Senadi, W.P. Hu, S.S.K. Boominathan, J.J. Wang, Chem. Eur. J. 21 (2015) 998-1003;
      (c) P. Moser, A. Sallmann, I. Wiesenberg, J. Med. Chem. 33 (1990) 2358-2368;
      (d) S. Nizalapur, O. Kimyon, N.N. Biswas, et al., Org. Biomol. Chem. 14 (2016) 680-693;
      (e) P.C. Huang, P. Gandeepan, C.H. Cheng, Chem. Commun. 49 (2013) 8540-8542;
      (f) J. Du, Y. Yang, H. Feng, Y. Li, B. Zhou, Chem. -Eur. J. 20 (2014) 5727-5731;
      (g) P. Qian, J.H. Su, Y. Wang, et al., J. Org. Chem. 82 (2017) 6434-6440;
      (h) A. Ilangovan, G. Satish, Org. Lett. 15 (2013) 5726-5729;
      (i) C. Zhang, S. Li, F. Buress, et al., ACS Catal. 6 (2016) 6853-6860;
      (j) Y. Zi, Z.J. Cai, S.Y. Wang, S.J. Ji, Org. Lett. 16 (2014) 3094-3097;
      (k) J. Luo, S. Gao, Y. Ma, G. Ge, Synlett 29 (2018) 969-973;
      (l) B. Tang, R. Song, C. Wu, et al., J. Am. Chem. Soc. 132 (2010) 8900-8902.

    14. [14]

      (a) T.X. Liu, S. Yue, C. Wei, et al., Chem. Commun. 54 (2018) 13331-13334;
      (b) S. Song, X. Li, X. Sun, Y. Yuan, N. Jiao, Green Chem. 17 (2015) 3285-3289;
      (c) Z. Zhang, Q. Tian, J. Qian, et al., J. Org. Chem. 79 (2014) 8182-8188;
      (d) J. Qian, Z. Zhang, Q. Liu, T. Liu, G. Zhang, Adv. Synth. Catal. 356 (2014) 3119-3124.

    15. [15]

      M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

    16. [16]

      (a) Q.C. Zhang, X. Li, X. Wang, et al., Org. Chem. Front. 6 (2019) 679-687;
      (b) X. Li, S.J. Li, Y. Wang, et al., Catal. Sci. Technol. 9 (2019) 2514-2522.

  • 加载中
    1. [1]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    2. [2]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    3. [3]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    4. [4]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    5. [5]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    6. [6]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    7. [7]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    8. [8]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    9. [9]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    10. [10]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    11. [11]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    12. [12]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    13. [13]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    14. [14]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    15. [15]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    16. [16]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    17. [17]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    18. [18]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    19. [19]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    20. [20]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

Metrics
  • PDF Downloads(11)
  • Abstract views(1161)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return