Citation: Ni Zibin, Bao Shenyuan, Gong Xue-Qing. A DFT study of the CO adsorption and oxidation at ZnO surfaces and its implication for CO detection[J]. Chinese Chemical Letters, ;2020, 31(6): 1674-1679. doi: 10.1016/j.cclet.2019.10.027 shu

A DFT study of the CO adsorption and oxidation at ZnO surfaces and its implication for CO detection

    * Corresponding author.
    E-mail address: xgong@ecust.edu.cn (X.-Q. Gong).
  • Received Date: 7 September 2019
    Revised Date: 20 October 2019
    Accepted Date: 22 October 2019
    Available Online: 24 October 2019

Figures(4)

  • Recently, ZnO-based gas sensors have been successfully fabricated and widely studied for their excellent sensitivity and selectivity, especially in CO detection. However, detailed explorations of their mechanisms are rather limited. Herein, aiming at clarifying the sensing mechanism, we carried out density functional theory (DFT) calculations to track down the CO adsorption and oxidation on the ZnO (1010) and (1120) surfaces. The calculated results show that the lattice O of ZnO(1010) is more reactive than that of ZnO(1120) for CO oxidation. From the calculated energetics and structures, the main reaction product on both surfaces can be determined to be CO2 rather than carbonate. Moreover, the surface conductivity changes during the adsorption and reaction processes of CO were also studied. For both ZnO (1010) and (1120), the conductivity would increase upon CO adsorption and decrease following CO oxidation, in consistence with the reported experimental results. This work can help understand the origins of ZnO-based sensors' performances and the development of novel gas sensors with higher sensitivity and selectivity.
  • 加载中
    1. [1]

      P. Rodlamul, S. Tamura, N. Imanaka, J. Ceram. Soc. Jpn. 126(2018) 750-754.

    2. [2]

      World Health Organization, WHO Guidelines for Indoor Air Quality: Selected Pollutants, (2010).

    3. [3]

      K.Z. Qi, G.C. Wang, W.J. Zheng, Surf. Sci. 614(2013) 53-63.

    4. [4]

      D. Punetha, S.K. Pandey, IEEE Sens. J. 19(2019) 2450-2457.

    5. [5]

      T. Nandy, R.A. Coutu, C. Ababei, Sensors 18 (2018) 3443.

    6. [6]

      J.K. Lee, W.S. Lee, W.I. Lee, et al., Phys. Status Solidi A. 215(2018) 1700929.

    7. [7]

      M. Hjiri, L. El Mir, S.G. Leonardi, et al., Sens. Actuators B-Chem. 196(2014) 413-420.

    8. [8]

      L. Zhu, W. Zeng, Sens. Actuators A-Phys. 267(2017) 242-261.

    9. [9]

      K.Z. Qi, X.H. Xing, A. Zada, et al., Ceram. Int. 46(2020) 1494-1502.

    10. [10]

      K.Z. Qi, B. Cheng, J.G. Yu, W.K. Ho, J. Alloys. Compd. 727(2017) 792-820.

    11. [11]

      K.Z. Qi, Q. Qin, X.C. Duan, et al., Chem. Eur. J. 20(2014) 9012-9017.

    12. [12]

      K.Z. Qi, J.Q. Yang, J.Q. Fu, et al., CrystEngComm 15(2013) 6729-6735.

    13. [13]

      S. Arunkumar, T. Hou, Y. Kim, et al., Sens. Actuators B-Chem. 243(2017) 990-1001.

    14. [14]

      R. Dhahri, M. Hjiri, L. El Mir, et al., J. Phys. D Appl. Phys. 49(2016) 135502.

    15. [15]

      X. Pan, X. Zhao, Sensors 15(2015) 8919-8930.

    16. [16]

      O. Lupan, V. Cretu, V. Postica, et al., Sens. Actuators B-Chem. 223(2016) 893-903.

    17. [17]

      K. Yadav, S.K. Gahlaut, B.R. Mehta, J.P. Singh, Appl. Phys. Lett. 108 (2016) 071602.

    18. [18]

      S.M. Mohammad, Z. Hassan, R.A. Talib, et al., J. Mater. Sci. 27(2016) 9461-9469.

    19. [19]

      S.W. Fan, A.K. Srivastava, V.P. Dravid, Appl. Phys. Lett. 95(2009) 142106.

    20. [20]

      R. Paulraj, P. Shankar, G.K. Mani, L. Nallathambi, J.B.B. Rayappan, J.Mater. Sci. 28(2017) 10799-10805.

    21. [21]

      T.Y. Tiong, C.F. Dee, A.A. Hamzah, B.Y. Majlis, S.A. Rahman, Sens. Actuators BChem. 202(2014) 1322-1332.

    22. [22]

      J. Wang, X. Li, Y. Xia, et al., ACS Appl. Mater. Interfaces 8(2016) 8600-8607.

    23. [23]

      M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, Nanoscale 6(2014) 235-247.

    24. [24]

      L.M. Yu, F. Guo, S. Liu, et al., J. Alloys. Compd. 682(2016) 352-356.

    25. [25]

      A. Gusain, N.J. Joshi, P.V. Varde, D.K. Aswal, Sens. Actuators B-Chem. 239(2017) 734-745.

    26. [26]

      B.H. Zhang, M. Li, Z.L. Song, et al., Sens. Actuators B-Chem. 249(2017) 558-563.

    27. [27]

      Z.S. Hosseini, A. Irajizad, A. Mortezaali, Sens. Actuators B-Chem. 207(2015) 865-871.

    28. [28]

      J.F. Deng, Q.Y. Fu, W. Luo, et al., Sens. Actuators B-Chem. 224(2016) 153-158.

    29. [29]

      G. Kresse, J. Hafner, Phys. Rev. B 47(1993) 558-561.

    30. [30]

      G. Kresse, J. Hafner, Phys. Rev. B 49(1994) 14251-14269.

    31. [31]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868.

    32. [32]

      P.E. Blochl, Phys. Rev. B 50(1994) 17953-17979.

    33. [33]

      G. Kresse, D. Joubert, Phys. Rev. B 59(1999) 1758-1775.

    34. [34]

      A. Alavi, P. Hu, T. Deutsch, P.L. Silvestrelli, J. Hutter, Phys. Rev. Lett. 80(1998) 3650-3653.

    35. [35]

      D. Wang, J. Jiang, H.F. Wang, P. Hu, ACS Catal. 6(2015) 733-741.

    36. [36]

      H.F. Wang, Z.P. Liu, J. Am. Chem. Soc. 130(2008) 10996-11004.

    37. [37]

      D.J. Cooke, A. Marmier, S.C. Parker, J. Phys. Chem. B 110(2006) 7985-7991.

    38. [38]

      T. Arai, K. Maruya, K. Domen, T. Onishi, Chem. Lett. 1(1989) 47-50.

    39. [39]

      Y. Madier, C. Descorme, A.M. Le Govic, D. Duprez, J. Phys. Chem. B 103(1999) 10999-11006.

    40. [40]

      M.Boaro, F.Giordano, S.Recchia, etal., Appl.Catal.BEnviron.52(2004)225-237.

    41. [41]

      J.M. Ziman, Principles of The Theory of Solids, World Book Inc, Beijing, 2009.

    42. [42]

      S. Mehraeen, V. Coropceanu, J.L. Bredas, Phys. Rev. B 87 (2013) 195209.

    43. [43]

      J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Energ. Environ. Sci. 5(2012) 5510-5530.

    44. [44]

      M. Boujnah, M. Boumdyan, S. Naji, et al., J. Alloys. Compd. 671(2016) 560-565.

    45. [45]

      Q.Y. Hou, J.J. Li, C.W. Zhao, C. Ying, Y. Zhang, Physica B 406(2011) 1956-1960.

    46. [46]

      D. Fruchart, V.A. Romaka, Y.V. Stadnyk, et al., J. Alloys. Compd. 438(2007) 8-14.

    47. [47]

      T. Yamamoto, Phys. Status Solidi 193(2002) 423-433.

    48. [48]

      M. Saha, S. Ghosh, V.D. Ashok, S.K. De, Phys. Chem. Chem. Phys. 17(2015) 16067-16079.

    49. [49]

      A. Nakrela, N. Benramdane, A. Bouzidi, et al., Results Phys. 6(2016) 133-138.

    50. [50]

      Z.H. Wang, Z.W. Tian, D.M. Han, F.B. Gu, ACS Appl. Mater. Interfaces 8(2016) 5466-5474.

    51. [51]

      D. Gaspar, L. Pereira, K. Gehrke, et al., Sol. Energy Mater. Sol. Cells 163(2017) 255-262.

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    3. [3]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    4. [4]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    5. [5]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    6. [6]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    7. [7]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    8. [8]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    9. [9]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    12. [12]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    13. [13]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    14. [14]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    15. [15]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    16. [16]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    17. [17]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    20. [20]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(15)
  • Abstract views(1104)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return